
Table of Contents

Getting Started
 ARMmite
 ARMexpress
 ARMweb
 BASICchip

The Compiler
 About
 Main Features
 Requirements
 ARMbasic and other BASICs
 Differences from PBASIC
 Frequently Asked Questions
 Revision History
 Notices

The Language
 Simple Statements
 Compound Statements
 Other Statements
 Functions
 Operators
 Data Types
 Alphabetical Keyword List

Runtime Library
 Date and Time Functions
 Mathematical Functions
 String Functions
 User Input Functions
 Floating Point Library

Hardware Library
 Version 7 Hardware Library

Hardware Specs
 Hardware Specs

Miscellaneous
 PreProcessor
 Debugging
 Logic Scope

ARMweb
 ARMweb

Tables
 ASCII Character Codes
 Bitwise Operators
 Operator Precedence
 Variable Types

Support
 How to contact the developers
 How to report a bug
 Contributors

Page 1

https://www.coridium.us/coridium/shop/boards/bd05-stamp

Getting Started

Getting Started
 ARM Stamp LPC11U37
 SuperPRO and Arduino variants
 Web enabled products
 Getting started with mBed
 BASIC on Teensy

Page 2

https://www.coridium.us/coridium/shop/boards/bd05-stamp

ARM Stamp LPC11U37 getting started

Getting Started
 Install Software
 Connect to ARM Stamp
 Writing your first program

 Programming the IO
 More complex programs
 Trouble Shooting
 BASICtools Features

Page 3

https://www.coridium.us/coridium/shop/boards/bd05-stamp

Step 1: Install Software
Coridium Products use a BASIC Compiler that runs on the PC. Coridium supplies BASICtools which includes
a terminal emulator and IDE that is specifically designed for the PRO family, BASICchip, ARMmite and
Ethernet boards. Also, a number of help files and documents about the ARMbasic will be installed on the
machine at this time. This installer is meant for Windows 10, WIndows 8, Windows 7, or Windows XPboth
32 and 64 bit version.

Download www.coridium.us/files/setupBASIC.exe from the web, and run the program to start the
installation.

 Click Next to get started.

 Accept the defaults and Install. You may chose a different target directory.

Page 4

http://www.coridium.us/files/setupBASIC.exe

 The installation will now run, and when it finishes hit Close .

 And its as easy as that.

On to Connecting to ARM Stamp

Page 5

Step 2: Connect USB
Connect USB Cable to ARM Stamp

Use a standard USB A to micro-B cable. Just plug it into the PC. We identify as a Microssoft USB Serial
device, so no drivers need to be installed.

That was pretty easy...

On to Step 3

Page 6

Step 3: Writing your first Program with BASICtools
Start the BASICtools from the Start-Menu or from the Desktop Icon. You should see a welcome message
which has been sent from the ARM processor-

If you do not see this welcome, even after pushing the RESET button, then communication has not been
established.

 check cables
 check power supply
 check COM port choice in BASICtools -> Options
 check baud rate in BASICtools -> Options
 on non-Coridium Boards, remove any BOOT select jumpers, press RESET again
 if still not working, check theTrouble Shooting Section

The traditional "Hi World" program

So type something like the traditional PRINT "Hi There"
When you hit the ENTER key it will be sent to the compiler on the PC and be echoed back
in the console window. (below)

Page 7

Now RUN the program

Which you can do by either typing RUN or hitting the RUN button at the top of the screen.

And see the results

Page 8

You can notice a number of things. First the program is compiled and then written into
Flash memory, and your program takes 40 bytes of code and less than 10 bytes of data space.
Next the program will be executed, as evidenced by the output of "Hi There" to the console.
ARM also reports back how long the program executed, in this case 8 msec, which is mostly startup time.

Also your program is now saved in the ARM Flash memory. And it will be executed the next time the board
is RESET. So try that...

Now wiggle some pins from a program

Page 9

Step 4: Programming the IO
Clear previous program

To begin a new program, you should CLEAR the previous one. You can do this with either the button or by
typing clear.

A program that uses IO

For the LPC11U37 - ARM Stamp and LPC1114 the LED is connected to P0(1).

 WHILE X<30
 IO(1) = X and 1 ' IO() sets pin direction and state
 X=X+1
 WAIT(500)
 LOOP

For the SuperPRO and PROplus. Use the following. LED is connected to P2(10).

 ' port 2 starts at 64
 WHILE X<30
 IO(64+10) = X and 1
 X=X+1
 WAIT(500)
 LOOP

Now RUN the program

Page 10

The LED on the PCB should pulse 15 times.

And see the results

Stop the program

Page 11

To stop a running program simply press the Stop button.

On to Step 5

Page 12

Step 5: More Complex Programming
Choose a File

While the Enter line can be useful for small programs or quickly checking out hardware, you will probably
soon need to write larger programs. The way to do this is with a text editor. We don't enforce any text editor
on you, you can choose your favorite. We tend to use the Crimson Editor, though a number of users are
liking NotePad Plus (NPP). Once you've typed up your program you can load that with BASICtools. It is
easier to create a larger program with a text editor and then to Load File. You can link BASICtools to your
favorite editor with the options (see the next section), or launch the original Windows Notepad if no editor is
chosen.

Also the Enter line is limited in that #include <library> may be used, but the general pre-processor #include
and other #directives should be avoided when typing a program a line at a time.

Page 13

http://www.crimsoneditor.com/
http://notepad-plus.sourceforge.net/uk/site.htm

You're now ready to start tackling your application. Check with the Coridium Forum for files and help from
other users of ARMbasic products.

For more details on the BASICtools IDE check the next page.

Page 14

http://www.coridium.us/forum

BASICtools Features
BASICtools startup

When BASICtools starts up, it will STOP any user program. So if you find yourself with a program flooding
the PC serial port with data, disconnect the serial connection, and reconnect and then choose the same
serial port under the Options menu.

This will clear and initialize the serial driver. Reopening the serial port will also stop any user program from
starting. A good idea is to erase that program, and a simple way to do that is to enter a 1 line program like
PRINT and hit run which will erase the runaway program.

BASICtools Layout

keyw ords: enter line debugin type BASIC commands

Buttons

 ..

Page 15

The CLEAR button only erases the display screen and the buffer on the PC of statements you have typed
into the Enter window.

To erase the program, load a new program, either a line at a time or using the Load menu.

keyw ords: reset button stop button run button clear button

File Menu

 ..

file load file reload file print save file quit

Page 16

Edit Menu

 ..

keyw ords: edit choose editor

Options Menu

Refresh will check for serial devices again, it is useful if you plugged a device in after starting BASICtools.

keyw ords: options port baud new line char mode PC compile control throttle

Control Menu

Page 17

keyw ords: options port baud new line char mode PC compile control throttle

BASIC variable viewer

Open this window from the Tools Menu (variables)

variables window

Page 18

This page is active when your program ENDs or hits a STOP statement or has been STOPed with the button.

code window

keyw ords: variable dump breakpoint STOP view memory

Page 19

ARMmite, PRO family and BASICchip Getting Started

Getting Started
 Install Software
 Connect SuperPRO or Arduino family
 Writing your first program

 Programming the IO
 More complex programs
 Trouble Shooting
 BASICtools Features

Page 20

https://www.coridium.us/coridium/shop/boards/bd05-stamp

Step 1: Install Software
Coridium Products use a BASIC Compiler that runs on the PC. Coridium supplies BASICtools which includes
a terminal emulator and IDE that is specifically designed for the PRO family, BASICchip, ARMmite and
Ethernet boards. Also, a number of help files and documents about the ARMbasic will be installed on the
machine at this time. This installer is meant for Windows 10, WIndows 8, Windows 7, or Windows XPboth
32 and 64 bit version.

Download www.coridium.us/files/setupBASIC.exe from the web, and run the program to start the
installation.

 Click Next to get started.

 Accept the defaults and Install. You may chose a different target directory.

Page 21

http://www.coridium.us/files/setupBASIC.exe

 The installation will now run, and when it finishes hit Close .

 And its as easy as that.

On to Connecting to SuperPRO

On to connect PRO family boards

Page 22

Step 2: Connect USB on the PRO family
Connect Coridium USB Dongle to ARMmite PRO

The ARMmite PRO Eval Kit comes with a USB dongle and cable. This dongle and cable allows you to
connect the ARMmite PRO directly to a computer equipped with USB. When connected to a PC, power is
supplied by the PC, the optional power connection is not required, but both may be safely connected.

Connect FTDI cable to ARMmite PRO

Connect black wire to GND. This cable is available at Digikey or the Makershed. This cable connects RTS
to RESETn, BASICtools support this.

Connect SparkFun USB Dongle to ARMmite PRO

Page 23

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=768-1028-ND
http://www.makershed.com/ProductDetails.asp?ProductCode=TTL232R

USB dongle from Sparkfun shown

Connect USB Cable to Computer

Locate the USB jack on your computer and plug the other end of
the cable into it.

Wow did I really take that picture on a computer with floppies. USB connectors have become more standard
since then.

Please Consult Installation Guides

Most PC's will sound a tone that indicates a new USB device has been connected. Most Windows Vista
and 7 systems will either include the FTDI device driver or are able to download it automatically from the
network.

Page 24

http://www.sparkfun.com/commerce/product_info.php?products_id=8772

If your system is unable to do that.

Install drivers for Coridium devices --

If no serial ports are active in your system you will be prompted to install drivers

Or if there are other serial devices in your system, you can install drivers from BASICtools menus

We try to keep up to date with the FTDI drivers for the chip we use, but up to date details are at the
www.ftdichip.com VCP drivers page.

Driver Installation Complete, Confirm USB Connection

Page 25

http://www.ftdichip.com

The ARMmite PRO will be powered from the USB bus, when using either the Coridium Dongle or the FTDI 5V
cable. It may also be connected to a 6-7V DC power source simultaneously.

To verify connection with the USB and PC the LED on the Eval PCB should light up.

On to Step 3

Page 26

Step 3: Writing your first Program with BASICtools
Start the BASICtools from the Start-Menu or from the Desktop Icon. You should see a welcome message
which has been sent from the ARM processor-

If you do not see this welcome, even after pushing the RESET button, then communication has not been
established.

 check cables
 check power supply
 check COM port choice in BASICtools -> Options
 check baud rate in BASICtools -> Options
 on non-Coridium Boards, remove any BOOT select jumpers, press RESET again
 if still not working, check theTrouble Shooting Section

The traditional "Hi World" program

So type something like the traditional PRINT "Hi There"
When you hit the ENTER key it will be sent to the compiler on the PC and be echoed back
in the console window. (below)

Page 27

Now RUN the program

Which you can do by either typing RUN or hitting the RUN button at the top of the screen.

And see the results

Page 28

You can notice a number of things. First the program is compiled and then written into
Flash memory, and your program takes 40 bytes of code and less than 10 bytes of data space.
Next the program will be executed, as evidenced by the output of "Hi There" to the console.
ARM also reports back how long the program executed, in this case 8 msec, which is mostly startup time.

Also your program is now saved in the ARM Flash memory. And it will be executed the next time the board
is RESET. So try that...

Now wiggle some pins from a program

Page 29

Step 4: Programming the IO
Clear previous program

To begin a new program, you should CLEAR the previous one. You can do this with either the button or by
typing clear.

A program that uses IO

For the LPC11U37 - ARM Stamp and LPC1114 the LED is connected to P0(1).

 WHILE X<30
 IO(1) = X and 1 ' IO() sets pin direction and state
 X=X+1
 WAIT(500)
 LOOP

For the SuperPRO and PROplus. Use the following. LED is connected to P2(10).

 ' port 2 starts at 64
 WHILE X<30
 IO(64+10) = X and 1
 X=X+1
 WAIT(500)
 LOOP

Now RUN the program

Page 30

The LED on the PCB should pulse 15 times.

And see the results

Stop the program

Page 31

To stop a running program simply press the Stop button.

On to Step 5

Page 32

Step 5: More Complex Programming
Choose a File

While the Enter line can be useful for small programs or quickly checking out hardware, you will probably
soon need to write larger programs. The way to do this is with a text editor. We don't enforce any text editor
on you, you can choose your favorite. We tend to use the Crimson Editor, though a number of users are
liking NotePad Plus (NPP). Once you've typed up your program you can load that with BASICtools. It is
easier to create a larger program with a text editor and then to Load File. You can link BASICtools to your
favorite editor with the options (see the next section), or launch the original Windows Notepad if no editor is
chosen.

Also the Enter line is limited in that #include <library> may be used, but the general pre-processor #include
and other #directives should be avoided when typing a program a line at a time.

Page 33

http://www.crimsoneditor.com/
http://notepad-plus.sourceforge.net/uk/site.htm

You're now ready to start tackling your application. Check with the Coridium Forum for files and help from
other users of ARMbasic products.

For more details on the BASICtools IDE check the next page.

Page 34

http://www.coridium.us/forum

BASICtools Features
BASICtools startup

When BASICtools starts up, it will STOP any user program. So if you find yourself with a program flooding
the PC serial port with data, disconnect the serial connection, and reconnect and then choose the same
serial port under the Options menu.

This will clear and initialize the serial driver. Reopening the serial port will also stop any user program from
starting. A good idea is to erase that program, and a simple way to do that is to enter a 1 line program like
PRINT and hit run which will erase the runaway program.

BASICtools Layout

keyw ords: enter line debugin type BASIC commands

Buttons

 ..

Page 35

The CLEAR button only erases the display screen and the buffer on the PC of statements you have typed
into the Enter window.

To erase the program, load a new program, either a line at a time or using the Load menu.

keyw ords: reset button stop button run button clear button

File Menu

 ..

file load file reload file print save file quit

Page 36

Edit Menu

 ..

keyw ords: edit choose editor

Options Menu

Refresh will check for serial devices again, it is useful if you plugged a device in after starting BASICtools.

keyw ords: options port baud new line char mode PC compile control throttle

Control Menu

Page 37

keyw ords: options port baud new line char mode PC compile control throttle

BASIC variable viewer

Open this window from the Tools Menu (variables)

variables window

Page 38

This page is active when your program ENDs or hits a STOP statement or has been STOPed with the button.

code window

keyw ords: variable dump breakpoint STOP view memory

Page 39

Ethernet Getting Started

Getting Started
 Install Software (BASICtools)
 Install Firmare (mbed BASIC binary)
 Connect Ethernet
 USB connection for ARMweb
 Writing programs with BASICtools

Page 40

https://www.coridium.us/coridium/shop/software/s05-mbed-lpc1768network
https://www.coridium.us/coridium/shop/software/s05-mbed-lpc1768network

Step 1: Install Software
Actually much of the software you need for the ARMweb is already on your computer. The interface to the
ARMweb is through any web-browser. That's why we call this Simply Connected™ technology.

A simple ARMbasic compiler runs on the ARMweb. While you can write short BASIC programs with this
interface, the compiler is there to support BASIC that is embedded into the HTML of the web pages served by
the ARMweb. Your main BASIC program should be debugged and loaded via BASICtools over a USB
connection.

You will want to run the setupBASIC installation, to get access to documentation about ARMbasic and the
PC based main BASIC compiler.

 Click Next to get started.

 Accept the defaults and Install. You may chose a different target directory.

Page 41

 The installation will now run, and when it finishes hit Close .

 And its as easy as that.

On to Step 2

Page 42

Step 2: Connect Power and Ethernet
Connect Ethernet Cable to ARMweb PCB

You should see a bluue LED on the mBed board and green LED connect light on the lower left side of the
Ethernet cable indicate a connection was made. Also your hub normally has a similar type of connection
indicator. There should also be some traffic indicated on the right side as the ARMweb looks for a DHCP.

For the mbed LPC1768 power can be supplied from the USB port. The picture above shows the Ethernet
connection using a breakout board from Cool Components (unfortunately no longer in production). The
Ethernet connection can also be made with a MAGJACK breakout board or mbed Application board from
SparkFun. .

The primary power for the ARMweb is 3.3V provided from a linear regulator. The input power for the PCB may
be 5V regulated supply or a 6-9V unregulated supply, with a current rating of 250 mA or more. The connector
is a standard 2.5mm barrel connector with the + positive side of the supply in the center. A good choice for
this power is this 5V regulated supply from SparkFun

If you don't see the LEDs lit, check your power connections (you should see at least 6V of the + side marked
on C1 with an unregulated supply or 5V with a regulated supply, and 3.3V as marked in the prototype area).

USB connection

You need a serial connection to debug BASIC programs as well as network issues. On the mbed 1768 board

Page 43

http://www.sparkfun.com/products/8269
http://www.sparkfun.com/products/8269

this is through the USB connector on the top of the board.

This can be our USB dongle (specific ARMweb version when ordering separately) or some other TTL serial
connection. Details on making the USB connection here.

Below is the picture you should see for the mbed 1768 board, with the capital M in coM indicating an mbed
serrial device.. If you do not see a coMxx serial device you may need to install the mbed serial device driver
(in \Program Files (x86)\Coridium\Windows_drivers.

Finding the card on the network (larger network) -- NetBIOS name service

The ARMweb will configure itself with an IP address assigned by a DHCP server. IP addresses are the way
networks organize themselves. If there is no DHCP server found, the ARMweb can provide limited DHCP
services in a Diagnostic mode, assuming a single connection on Ethernet with a PC using either a hub or
cross-over cable (see the Diagnostic section below).

Assuming a DHCP server is available and you are running on a Windows machine, you can use the Windows
NetBIOS Name Service. In which case you can find the ARMweb initially with http://armweb. Note that
some administrators disable NetBIOS name service .

Page 44

http://www.coridiumcorp.com/catalog/product_info.php?products_id=83
http://armweb
http://armweb

Finding the card using the DHCP server

On most home networks your DHCP will be your internet connection, and its address will share the first 3
bytes with the IP address of your PC. And the final byte being 1. The IP address of your PC is available from
the control panel or by typing IPCONFIG at a DOS command line. Common values for the DHCP server are
192.168.1.1 or 192.168.0.1 as in the example below.

You can navigate to the DHCP server using that IP address from a browser as below.

Most DHCP servers will list client machines which have been assigned an IP address. This 2wire server
indicates it on the details view of the home network, and details for the device

Page 45

Another example is the display from a Dlink Firewall that is also providing DHCP services.

So in this case the ARMweb can be found at http://192.168.0.48

Now that you have the IP address of the ARMweb

You can go onto configuration settings, or writing simple programs using BASICtools.

But for this web interface navigate using a browser to http://w.x.y.z where w.x.y.z is the IP address of the
ARMweb (192.168.0.48 in this example).

Page 46

http://192.168.0.482
http://w.x.y.z
http://192.168.0.48
http://w.x.y.z

DHCP assignment vs. fixed IP addressing

We routinely allow the DHCP server to assign an initial address, but will can a fixed IP address in the final
setup. One reason to assign a fixed IP, is to make sure that the IP address assigned never changes, for
instance following a power outage. Details on setting a fixed IP address.

On to Step 3

Page 47

USB connection for BASICtools
The main user program is loaded through BASICtools via a USB connection. The attachment of the USB and
power supply is shown below.

Initially you will have to load BASIC firmware onto the LPC1768. These boards use the mbed protoco, so
when you plug the board in for the first time, an MBED disk will appear to the files manager (below)

Depending on the mbed firmware version (running on a different CPU LPC11U35 or LPC43xx), you may see a
.bin file. Delete any of these and copy the BASIC.bin firmware you downloaded or were emailed from
Coridium. And also depending on mbed firmware you may need to reset the board via push button. Not for
older ARMweb/ LPC2138 boards usethese directions .

While an Ethernet connection is not required, if it exists and there is a DHCP server, the ARMweb will boot
faster (otherwise each reset the 10 second timeout waiting for DHCP service will occur).

 mbed LPC1768

Page 48

Seeed
Studio ArchPro

ARMweb

Page 49

DINkit - Ethernet.

BASIC and Web page interaction

BASIC can be embedded in the web page served by webBASIC. That BASIC code can access global
variables of the user program running on the ARM. BASIC embedded in the web page can NOT call a
FUNCTION or SUB..

The user (client) can also interact with an webBASIC program via the CGI mechanism.

USB drivers

Most PC's will sound a tone that indicates a new USB device has been connected. Most Windows 7, 8 and
10 systems will either include the FTDI device driver or are able to download it automatically from the
network.

If your system is unable to do that. Run the FTDI driver installation setup in the \Program
Files\Coridium\Windows_drivers directory. This will install the proper drivers for the FTDI chips we use for
interfacing to the USB.

Up to date details are at the www.ftdichip.com VCP drivers page.

Continue with the some programming examples.

or

More details on webBASIC...

Page 50

http://www.ftdichip.com

Step 3: Writing a simple Program with the web
interface
The traditional "Hi Mom" program

This section describes writing programs with the web interface, which is fine for small programs. But you will
really want to use the USB interface to write larger programs, covered in the next section .

So type something like the traditional PRINT "Hi Mom"
When you hit the ENTER key it will be sent to the ARMweb and be echoed back
in the console window. (below)

Page 51

Now RUN the program

Page 52

Which you can do by either typing RUN or hitting the RUN button at the top of the screen.

And see the results

Page 53

You can notice a number of things. First the program is compiled and then written into
Flash memory, and your program takes 0K of code and 0K of data space.
Next the program will be executed, as evidenced by the output of "Hi Mom" to the console.
ARMweb also reports back how long the program executed, in this case 3 msec

On to the next Step

Page 54

Step 3: Writing your first Program with BASICtools
Start the BASICtools from the Start-Menu or from the Desktop Icon. You should see a welcome message
which has been sent from the ARM processor-

If you do not see this welcome, even after pushing the RESET button, then communication has not been
established.

 check cables
 check power supply
 check COM port choice in BASICtools -> Options
 check baud rate in BASICtools -> Options
 on non-Coridium Boards, remove any BOOT select jumpers, press RESET again
 if still not working, check theTrouble Shooting Section

The traditional "Hi World" program

So type something like the traditional PRINT "Hi There"
When you hit the ENTER key it will be sent to the compiler on the PC and be echoed back
in the console window. (below)

Page 55

Now RUN the program

Which you can do by either typing RUN or hitting the RUN button at the top of the screen.

And see the results

Page 56

You can notice a number of things. First the program is compiled and then written into
Flash memory, and your program takes 40 bytes of code and less than 10 bytes of data space.
Next the program will be executed, as evidenced by the output of "Hi There" to the console.
ARM also reports back how long the program executed, in this case 8 msec, which is mostly startup time.

Also your program is now saved in the ARM Flash memory. And it will be executed the next time the board
is RESET. So try that...

Now wiggle some pins from a program

Page 57

Step 4: Programming the IO
Clear previous program

To begin a new program, you should CLEAR the previous one. You can do this with either the button or by
typing clear.

A program that uses IO

For the ARMweb type the following program in the console window.

 ' enable pin P0(7) is connected to the LED
WHILE X<30
 IO(7) = X AND 1 ' drive pin 7 high when x is odd, low when x is even
 X=X+1
 WAIT(500)
LOOP

For the DINkit type the following program in the console window.

 ' enable pin P0(15) is connected to the LED
WHILE X<30
 IO(15) = X AND 1 ' drive pin 15 high when x is odd, low when x is even
 X=X+1
 WAIT(500)
LOOP

For the ARMweb and DINkit to drive the port 1 pins. On all versions ARMweb and DINkit, you can use the
following

 #include <LPC21xx.bas>

 FIO1DIR = FIO1DIR OR (1<<16) ' enable the pin as an output
 WHILE X<30
 P1(16) = X and 1
 X=X+1
 WAIT(500)
 LOOP

Page 58

Use the following if you have firmware 7.52 or later (includes floating point support)

 ' port 1 starts at 32
 WHILE X<30
 IO(32+16) = X and 1
 X=X+1
 WAIT(500)
 LOOP

The LED on the PCB should pulse 15 times.

And see the results

Stop the program

Page 59

To stop a running program simply press the Stop button.

On to Step 5

Page 60

ARMweb C support

FreeRTOS

We have posted at the FreeRTOS web site a version of FreeRTOS that has been ported to the ARMweb.
This open source system is available to our users.

Coridium will provide C support based on either FreeRTOS or on our proprietary system for a fee for custom
programming.

The FreeRTOS will support a web server interface, but it does not include the HTML inline BASIC compiler.

Page 61

http://www.coridiumcorp.com

MBED Getting Started

Getting Started
 Install Software
 Install Software
 Connect USB to MBED
 Writing your first program
 Writing programs with IO

Page 62

https://www.coridium.us/coridium/shop/software/s05-mbed-lpc1768network

Step 1: Install Software
To start using MBED with BASIC, download and run www.coridium.us/files/setupBASIC.exe , directions
on the install steps here .

Install serial drivers for MBED --

If no serial ports are active in your system you will be prompted to install drivers

Or if there are other serial devices in your system, you can install drivers from BASICtools menus

On to connect MBED boards

Page 63

http://www.coridium.us/files/setupBASIC.exe

Step 2: Connect USB to MBED
Start BASICtools

If there are no serial devices listed that have only the last letter capitalized, then the MBED drivers for a USB
serial device have not been installed, go back to step 1 and install the drivers. There may be other comx
ports listed (all lower case), which are not MBED USB serial devices. Any COMx devices (all caps) listed are
FTDI serial ports. If there is a coMx device listed skip to the end of the page. Select that serial port.

If you do not see this ComN device, then communication has not been established.

 check cables
 make sure you installed the MBED serial device drivers
 push the Reset Button

Now change the baud setting for the serial port. Earlier Coridium devices used 19.2Kbaud as a default rate,
but newer ones and MBED use 115Kbaud

Install BASIC firmware on the MBED

Page 64

You were emailed a mbedXXXX.bin file from Coridium. Copy this file onto the MBED directory, make sure it is
the only .bin file in that directory. Then press the RESET button.

You should see a welcome message in the BASICtools window

On to Step 3

Page 65

Step 3: Writing your first Program with BASICtools
The traditional "Hello World" program

So type something like the traditional PRINT "Hello World"
When you hit the ENTER key it will be sent to the compiler on the PC and be echoed back
in the console window. (below)

Now RUN the program

Which you can do by either typing RUN or hitting the RUN button at the top of the screen.

The program is compiled on the PC and downloaded into MBED Flash and then executed.

And see the results

Page 66

You can notice a number of things. First the program is compiled and then written into
Flash memory.

Next the program will be executed, as evidenced by the output of "Hello World" to the console.
ARM also reports back how long the program executed, in this case 1 msec, which is mostly startup time.

Also your program is now saved in the ARM Flash memory. And it will be executed the next time the board
is powered on

 Now wiggle some pins from a program

Page 67

Step 4: Programming the IO
A program that uses IO

A simple BLINKY program is one of the examples, a program that flashes the LED. Load that program from
the Examples

Now LOAD and RUN the program

This program counts to 29 turning the four blue LEDs on and off with each count.

To look at the source choose to Edit the file from that menu.

Stop the program

Page 68

To stop a running program simply press the Stop button.

On to Step 5 -- details of the BASICtools program

Page 69

Teensy Getting Started

Getting Started
 Install Software
 Connect USB to Teensy
 Writing your first program
 Writing programs with IO

Page 70

https://www.coridium.us

Step 1: Install Software
To start using Teensy with BASIC, have the latest version of Teensyduino installed. We have checked it with
version 1.18-rc3. You can find the latest software releases from PJRC here . You can now install drivers
from BASICtools follow the steps below.

Download and run www.coridium.us/files/setupBASICbeta.exe , directions on the install steps here.

Install drivers for teensy --

If no serial ports are active in your system you will be prompted to install drivers

Or if there are other serial devices in your system, you can install drivers from BASICtools menus

On to connect Teensy boards

Page 71

http://forum.pjrc.com/forums/6-Announcements
http://www.coridium.us/files/setupBASICbeta.exe

Step 2: Connect USB to Teensy
Connect USB to Teensy

Start BASICtools

If there are no serial devices listed that have only the first letter capitalized, then the last Teensy program did
not enable the USB serial device. There may be other comN ports listed (all lower case), which are not
Teensy USB serial devices. Any COMN devices (all caps) listed are FTDI serial ports. If there is a ComN
device listed skip to the end of the page.

Select the Control Tab, and select the Teensy device you are using.

These 2 popups below will appear. To initially load a program that enables the USB serial device push the
button on the Teensy.

Page 72

After the button is pushed the Options menu will now reflect Teensy options and will show a ComN port (first
letter capitalized) as a Teensy USB serial port.

If you do not see this ComN device, then communication has not been established.

 check cables
 make sure you choose the correct device Teensy3.0 / Teensy3.1
 push the Activate Button

On to Step 3

Page 73

Step 3: Writing your first Program with BASICtools
Start the BASICtools from the Start-Menu or from the Desktop Icon. You will not see a welcome message
which the Teensy until you start the first program-

The traditional "Hello World" program

So type something like the traditional PRINT "Hello World"
When you hit the ENTER key it will be sent to the compiler on the PC and be echoed back
in the console window. (below)

Now RUN the program

Page 74

Which you can do by either typing RUN or hitting the RUN button at the top of the screen.

The Teensy.exe file will be called to download the program (you should not need to push the Activate
button) and a "Teensy is Downloading" popup screen will be active while the program is being loaded and
starts running.

And see the results

You can notice a number of things. First the program is compiled and then written into
Flash memory.

Next the program will be executed, as evidenced by the output of "Hello World" to the console.
ARM also reports back how long the program executed, in this case 1 msec, which is mostly startup time.

Also your program is now saved in the ARM Flash memory. And it will be executed the next time the board
is powered on

 Now wiggle some pins from a program

Page 75

Step 4: Programming the IO
A program that uses IO

A simple BLINKY program is one of the examples, a program that flashes the LED. Load that program from
the Examples

Now LOAD and RUN the program

This program counts to 29 turning the LED on or off with each count.

To look at the source choose to Edit the file from that menu.

To stop a running program simply press the Stop button.

On to Step 5 -- details on BASICtools program

Page 76

The Compiler

The Compiler
 About
 Main Features
 Requirements
 ARMbasic and other BASICs
 Differences from PBASIC
 Frequently Asked Questions
 Pre-processor
 Revision History
 Notices

Page 77

https://www.coridium.us/coridium/shop/boards/bd05-stamp

About

 ARMbasic is a 32-bit BASIC compiler for ARM processors. It was started to create a portable, alternative
to hardware debuggers, but has quickly grown into a powerful programmable controller tool, already including
support for asynchronous serial, I2C, SPI, PWM, timer and counter operations. It is run on ARM CPUs from
NXP ranging from the 50 MHz 32KB BASICchip to the 100 MHz 256KB SuperPRO.

 ARMbasic is simple to use, with a USB connection to the PC for programming. The target applications
include control functions, so performance and a powerful set of hardware routines have been included. The
language has a minimum of overhead when compared to larger general purpose languages.

 Aside from having a syntax the most compatible possible with MS-VisualBASIC, ARMbasic introduces
several new features such as hardware specific routines, string support, limited pointers and many others.

 ARMbasic is written in ANSI-C compiled with GCC.

Page 78

Main Features

Simplicity

 Many control applications can be accomplished in a very small program
 ARMbasic can be installed in minutes, and be solving your control problems just as quickly
 While BASIC is considered a simplistic language, ARMbasic with built-in hardware functions and the

speed of compiled code can be a higher performance solution than many more complex languages
 As it is an incremental compiler, it has the feel of an interpreter. Its quick and easy to debug its

programs. Why learn a new development system, you can either enter programs directly from the
console or use any text editor that you are already familiar with.

BASIC Compatibility

 ARMbasic from Coridium is not a "new" BASIC language. It is not required of you to learn anything
new if you are familiar with any Microsoft-BASIC variant. Even if you don't have knowledge of the
BASIC language, its constructs are easy to learn and easy to use.

 ARMbasic is case-insensitive; scalar variables don't need to be dimensioned or declared before
use; MAIN function is not required. Syntax follows much of that of Microsoft-Visual BASIC

Most of the PBASIC IO functions have been added

 INPUT and OUTPUT control pin direction
 IO(x) reads or writes a pin state and control input/output direction
 HIGH and LOW control pin output values
 I2C on any of the pin pairs
 SPI using any group of 2/3 pins
 Hardware based PWM
 Software PWM on any pin with 256 levels
 PULSIN and PULSOUT will measure or output a pulse
 SHIFTIN, SHIFTOUT can be used for SPI or MicroWire devices
 OWIN and OWOUT support one-wire devices
 SERIN, SEROUT can be used for low duty cycle asynchronous serial ports on any pin up to

115Kbaud
 RCTIME will measure a capacitive delay

Support for 32-bit variables and Strings

 Integer: (32-bit math)
 Single (32-bit IEEE 754 floating point)
 String support

Arrays

 Static arrays supported, up to 32KB in size on the ARMexpress, 4KB on the ARMmite
Memory Limits

 All arrays, variables and strings are allocated from a 33KB space on the ARMexpress, 5KB on the
ARMmite

 Code will include user programs, constant strings (used in expressions or PRINT), DATA constants.
 On the SuperPRO 128KB is available for user programs, and an additional 8KB is available for DATA

constants and constant strings. In addition 120KB of Flash can be written and functions as
non-volatile memory. Note that Flash may be written a minimum of 100K times.

 On the BASICchip 20KB is available for user programs.
Direct Hardware Access

 Uses the same syntax as C-pointers
Debugging support

 The ease and speed of an interpreter.
 Dump of variables used
 compiled breakpoint

Page 79

Included with any module

 The BASICchip and PRO families compile their programs on the PC and they are downloaded using
BASICtools, that compiler is part of the utilities available for download from Coridium

Page 80

Requirements

All versions

 ARMbasic for the BASICchip, PRO family, ARMmite, and ARMweb runs on Windows and is
controlled by a USB port..

 The ARMbasic compiler runs on the Windows PC, all versions Windows XP and later.
 The ARMbasic compiler runs on the ARMweb hardware platform and can use a browser for simple

programs.
 BASICtools is a simple IDE which controls compilation and download of programs to the ARM

hardware.
 TclTerm is a terminal emulation program written in Tcl, and has been ported to Windows. Other

terminal emulators may be used, if they allow control of DTR/RTS, or they can be run in Legacy
mode .

 Documentation is available in both Windows CHM format, PDF and HTML.

Page 81

Installing

Windows 7

Windows Vista

 Follow the installer instructions which are also outlined in the Getting Started section. The compiler
is run on the PC and hex code is downloaded and stored in Flash on the ARM chip.

 Connection to a PC is done with a serial port, details in the corresponding Getting Started Section
.

Windows Vista 64bit version

 The Windows XP installer BASICtools and TclTerm interface program works for WinXP x64, but the
drivers specific for x64 and the FTDI interface must be used.

Windows XP

 Follow the installer instructions which are also outlined in the Getting Started section. The compiler
runs on the PC.

 Connection to a PC is done with a serial port, details in the corresponding Getting Started Section
.

Windows XP 64bit version

 The Windows XP installer BASICtools and TclTerm interface program works for WinXP x64, but the
drivers specific for x64 and the FTDI interface must be used.

Windows 2000

 The Windows XP installer, BASICtools and TclTerm interface program works for Win2000.
Windows 98

 Win98 is no longer supported, if you have an old machine install Win2000 on it.
Linux

 Currently an installer is not supported, but only the documentation and a terminal emulator are
required.

 A command line interface has been developed for Windows as an example of how to do the same in
Linux. The necessary files and sources can be found in the files section of the Yahoo
ARMexpress Group . There is an effort to port this to Python going on, contact Coridium if you
would like to help.

Others

 To communicate with the ARM, a connection to a serial port is required
 The documentation is available in HTML format so anything with a browser should be capable of

using it.
 Parallels on Mac OS X runs with the WinXP utilities. OS X version of Tcl does not currently support

serial devices so we have not been able to port our utilities to run natively on the Mac.

.

Page 82

http://tech.groups.yahoo.com/group/ARMexpress/files/
http://tech.groups.yahoo.com/group/ARMexpress/files/

Running

Windows version

 A desktop icon and start-menu links should be created by the installer, use them to open the
console directly into the directory where the tools are stored

 see Getting Started section
Linux version

 port not done, though the source is available
 contact Coridium if you want to help build a Linux version, we aren't Linux experts but have provided

native versions of the compiler
 BASICtools is written in Tcl and runs on Linux

Mac version

 runs on Parallels using WinXP
DOS version

 no direct support for this

Page 83

ARMbasic and other BASICs

ARMbasic and Visual BASIC have different goals. Visual BASIC is a general purpose language that includes
access to various elements of Microsoft Windows and its application programs. ARMbasic is a small
language aimed at controlling hardware with some communication abilities with host systems. Wherever
practical ARMbasic is a proper subset of Visual BASIC. Some elements of earlier BASICs do not apply to
Visual BASIC, but still do in ARMbasic. These elements include keywords such as RUN and CLEAR.

Data Types

 Visual BASIC has a rich set of data types as well as object oriented extensions.
 In ARMbasic the default data type is 32 bits (SIGNED INTEGER), and also supports arrays of

SIGNED INTEGERS and STRINGs of bytes terminated by 0. and 32 bit IEEE 754 floating point
numbers.

Changed due to ambiguity

 FOR..NEXT is ambiguous for negative STEP. To clarify negative steps use DOWNTO.
Design differences

 One goal of ARMbasic is to be a simple, easy to use language, but still be a powerful tool for
controlling hardware. For this reason a simple subset of BASIC has been chosen, with extensions
for hardware control.

 Only single dimension arrays are supported.
Pre-Processor

 This is a very powerful tool available to C programmers, but not available in many BASICs
 The C-preprocessor (CPP) has been integrated into BASICtools

Page 84

Differences from PBASIC

ARMbasic version 7 has been shipping and it abandons the script style commands of PBASIC hardware
routines in favor of Visual BASIC like functions and subroutines in separate libraries accessed by #include.

32-bits vs. 16-bits

 ARMbasic is written for 32-bit hardware, and cannot utilize code which depends on 16-bit truncation.
 The default data type is 32 bit integers, rather than 16 bits in PBASIC.

Changed due to ambiguity

 FOR..NEXT is ambiguous for negative STEP. To clarify negative steps use DOWNTO
 The PBASIC syntax of IN0, DIR0, OUT0 has problems with parameterization. It is replaced by the

use of IN(0), DIR(0) and OUT(0).
 The formatted input of many PBASIC words will in many cases hang waiting for input if it is not of the

proper form. Its better to accept any or all input and then parse it later, but PBASIC does not have
that ability. A simple set of string functions have been added to ARMbasic to interpret input

Design differences

 Integer variables do not need to be declared. This is common to most other BASICs. ARMbasic
does not require simple variables to be declared before use. As of version 6.23 of the Windows
ARMbasic compiler allows the use of DIM xxx AS INTEGER to declare simple variables, and will
enforce that all variables be declared by DIM after that first DIM declaration.

 As there is much more variable space available, simple BIT, NIBBLE, BYTE types are not supported.
Arrays of BYTE also called strings are supported

 Normal BASIC array declarations are supported using DIM. Unlike PBASIC syntax.
 PIN declaration is replaced by treating pins as an array IN(x) vs. INx. This makes parameterization

of pins simpler.
 The standard CONST syntax of most BASICs is used instead of PBASIC CON syntax
 Multiple statements on a single line are not supported
 The standard PRINT is used and its syntax is used in place of PBASIC DEBUGOUT
 Simple statements must be completed on a single line, run on statements are not supported
 The $ suffix can be used to declare strings using the DIM statement
 Strings use a null (char 0) terminator .
 CLEAR is used to reset all variables and reset the stack.
 In an interpreter there is an advantage to having functions such as &\ |\ ^\ ** *\ DIG and DCD But

these are easily done in a compiled BASIC and have no performance or space penalty.

 x = NOT (a AND b) ' equivalent to a &\ b

 x = a * b >> 16 ' equivalent to a ** b (for 16 bit values)

 x = a * b >> 8 ' equivalent to a */ b (for 16 bit values)

 x = y /1000 mod 10 ' equivalent to y DIG 4

 x = 1<<6 ' equivalent to DCD 6

 HYP, TAN and NCD are not implemented in ARMbasic
 Many differences will be handled in the PBASIC translator pre-process step (under development)
 -$hex values are not supported

Design simplifications

 Only 1 statement per line is allowed
 run-on statements are not allowed (continuation to the next line)
 Formatted input is replaced with elementary string functions
 PRINTF is part of the firmware and can be called from ARMbasic

Archaic commands

Page 85

 DTMFOUT is not supported.
 ON and BRANCH should be coded using SELECT CASE.
 LOOKUP can use arrays or strings.
 LOOKDOWN should be coded using SELECT CASE
 GET, PUT can be replaced with arrays

Page 86

Preprocessor for BASIC

Most BASICs do not have a pre-processor. ARMbasic does not include one as part of the standard
language, but a version of the CPP has been included as part of the utilities.

The CPP (C preprocessor) is a very powerful tool, most users use just a fraction of the features, but if you
want the full story check this document from gcc .

As of version 5.14 of BASICtools, the type of CPU is used to generate a #define LPCxxxx that is added
before any of the user source code. This can be used to write code good for any of the CPUs as is done in
RTC.bas and HWPMW.bas libraries.

These are the most common directives that apply to use with ARMbasic: Unlike ARMbasic these keywords
and any parameters used in them ARE CASE SENSITIVE. The pre-processor is run on the PC, so it is not
available when using the built-in compiler of the ARMweb. However the compiler with preprocessor can be
used to generate files that can be downloaded to the ARMweb (use the Save Intermediates check box in the
Files menu of BASICtools).

#include "filename"

#include <filename>

#define

#ifdef

#ifndef

#if

#if (defined)

#else

#elif

#endif

#undef

#error

#warning

CPP operation

The CPP is a multi-step process carried out automatically by the BASICtools program. All operations are
done in a temp file directory created at %temp%Coridium/temp. All files in this directory will be deleted when
a File>>Load is performed by BASICtools.

It starts with your source file, and it will be copied into the %temp%/Coridium directory. When copied all
comments will be stripped. All included files will be also copied into this temp directory. Then the CPP will
be run on the files in that temp directory creating a __temp.bpp file that is the result of all the pre-processor
operations. This __temp.bpp file will be combined with other information as __temp.bas and then compiled
by ARMbasic.exe and its output is __temp.out. This __temp.out file is a modified Intel hex format of the
code generated by the source BASIC program. __temp.out will be downloaded to the ARM.

In addition __temp.bat and __errors.tmp files will be created. __temp.bat is a batch file used in the
compilation process. Errors from the compile or any of its steps will be contained in __errors.tmp.

Page 87

https://gcc.gnu.org/onlinedocs/gcc-4.2.0/cpp/index.html#Top

Page 88

Frequently Asked Questions

ARMbasic questions:

What is ARMbasic?

 ARMbasic is a compiler included in a family of modules using the ARM CPU from Coridium Corp. The
compiler runs on the ARM processor for the ARMweb products or on the PC for the other ARM products.

 ARMbasic has a syntax generally compatible with Visual BASIC,

 ARMbasic is written in ANSI C, compiled with GCC.

Who is responsible for ARMbasic?

 Coridium Corp. distributes and maintains ARMbasic. They can be contacted at
www.coridiumcorp.com .

Why should I use ARMbasic?

 ARMbasic has innumerable advantages over the alternatives.
 It's fast.
 It produces compiled machine code not interpreted tokens.
 It's simple.
 It has powerful hardware functions built-in for the popular serial control busses.
 It's cost effective.
 It's easy to use
 Did we say it's fast?

Why should I use ARMbasic rather than GCC?

 There's no question that some problems require more complex languages. But many control problems are
quite simple and this is what ARMbasic exceeds at. In many cases ARMbasic will run faster than a
compiled C program. How is that possible, you ask? The answer is that ARMbasic has only global scope,
there is no stack frame in the majority of the user code. Control transfers are faster than procedure calls of
C or Java. ARMbasic is a compromise of speed and code size, but it compares favorably to programs
written in C.

How fast is ARMbasic?

 The fastest loops use the WHILE ... LOOP, with a simple loop running 7 million iterations per second.
 Loops take a number of instructions to execute, when running simple instructions such as X= X+1, it will
run at speeds exceeding 13 million lines per second.

How compatible is ARMbasic with Windows Visual-BASIC code?

 ARMbasic uses Visual BASIC syntax where compatible. Its unlikely you'll be porting a Visual BASIC
application to ARMbasic, but if you do let us know about it.
 Being a subset of Visual BASIC opens a larger audience of programmers to this tool, including those who
may not have thought they'd be writing code for programmable controllers. .

Does ARMbasic support Object Oriented Programming?

 ARMbasic does not support Object Oriented Programming.

Variable Scope

 Most labels and variables are global in ARMbasic. The advantage is that there is little stack
overhead which gives greater performance.

Page 89

http://www.coridiumcorp.com

 As of version 6.24, of the PC compiler a local scope for functions has been added.

Floating Point Math

 ARMbasic uses both 32 bit integer math and 32 bit IEEE 754 floating point math. The difference in
performance is approximately 10:1 for operations on INTEGERs vs. operations on SINGLEs.

Why have any of the compiler on the ARM?

The original ARMexpress had the compiler completely on the ARM, and this was the heritage of where the
compiler came from and why it came into existence. But the intention was always to have an ARMweb
product, and for that product to support adding ARMbasic statements into a web page that are executed on
the fly. The only reasonable way to do that was to be able to compile those statements at runtime during
page service, and that means the compiler has to live at least on the ARMweb.

The 2103 group of products uses a very small ARM memory chip, so the runtime and hardware libraries that
are used by the ARMbasic are all that is included there.

Another side-effect of the compiler being on chip, is that it had to be small, and the smallest compilers are of
the recursive-decent type, which includes the ARMbasic compiler. What this means is that the syntax of the
language is included in the source of the compiler parser. An advantage of these compilers is the size and
normally they are also pretty fast. Some of the bad things are you can break the compiler with some odd
coding styles. As there is a stack being used for parsing, you can make that overflow with statements that
cause a lot of recursion like-

x =
((1))
))))))))))))))))))

But why would you need to write any code like that? Another "feature" of recursive decent compilers is that
error recovery can be poor. The way we chose to do this is to have any error reset the parser to the
"outermost" state. What this means is that if an error occurs inside a loop like

DO
 x x =2
 y = 3
LOOP

will cause an error on the LOOP statement as well as the x x = 2 statement, as the loop has been broken
as the parser returns to the outermost state. Yes this causes errors on good statements, but its a prudent
choice from our perspective. You don't want the compiler guessing what you meant and correcting your code
(I believe PL1 tried that to comical results).

What are the planned future features for ARMbasic?

 more string functions
 more serial busses
 more hardware functions
 networking
 analog functions
 let us know what you need

Can ARMbasic be customized?

Coridium Corporation is aimed to produce high performance modules based on the latest technologies.
Currently this includes the ARM processor. But Coridium also has the engineering resources to customize
our designs for the specific needs of our OEM customers. This may include an interface to a specific
peripheral chip with language extensions added to the ARMbasic. It may also include an FPGA solution to
extend the capabilities of both the hardware and software.

So if you need something special, but want the ease of use of ARMbasic , tell us about your application.
We are quick to respond, and have designed a custom hardware software combination that delivered
prototypes in a couple of weeks, and production volumes within a month.

Page 90

What volumes make sense for customization? It depends on the complexity, but at a few hundred units the
numbers begin to pencil out.

Page 91

Revision History

Revision History:

6.06

 ARMbasic initial release summer of 2006

 This version of hardware uses open drain IOs on IO(5) and IO(6), this will be changed in future versions.

6.07

 Generalized the operation of the I2CIN (backward compatible) and I2COUT.

 Optimized all index operations (includes arrays, input/output and strings). Gave 3x performance
improvement for these types of operations. Now no difference in using constants or expressions for indexes.

 Added the ability to use SIN and SOUT pins for SERIN, SEROUT, BAUD(), RXD() and TXD() as pin 16.

 Corrected STRCOMP function.

6.08

 Extended break timeout on RESET to 0.5 second.

 Accept either CR or LF to terminate a line.

 SLEEP now goes into a power down mode using alarm function to wake up.

 DEBUGIN string added

 Enforce proper declaration of strings and arrays

 Multiple string concatenations allowed per line

 noted an error - BAUD rate for port 16 can not be changed currently.

6.09

 Added string$ support as an Outputlist in hardware functions (zero terminated or constant string)

 Expanded the space available for programs to 56K.

6.10

 Support for ARMmite.

6.11

 BAUD rate setting for port 16 (the hardware serial port) is now allowed. The ARMexpress transceivers limit
speed to 19.2Kb, but the ARMmite can run up to 942Kb on port 16.

6.12

 Expanded symbol table on ARMexpress, and also allow PC to compile for ARMexpress, which allows
much larger symbol table.

6.13

 Added SPIMODE and SPIBI.

6.14

 Fixed a bug affecting ARMexpress only in large programs with certain GOSUBs. The bug resulted in
programs restarting at the GOSUB.

6.15

 Improved SPI performance.

Page 92

6.16

 Improved SERIN performance to accept 115.2 Kb streams. There is still a 30 uSec startup for SERIN, and
RXD() has better performance as long as the pin is not changed.

6.17

 Added HWPWM for 8 channels, though there is a bug that times for channel 7 and 8 are swapped. Added
send of + character after Flash has been written, this was done as XON/XOFF was overrunning, and this is
used to handshake with BASICtools.

6.18

 Fixed HWPWM swap of channel 7 and 8. Added gets() like support for SPIIN, SERIN, OWIN and I2CIN.
Also added I2CSPEED for slower I2C devices. Corrected subtract followed by divide bug.

6.19

 Added I2CSPEED to slow down I2C operations for older parts or long cables. DATA statements can
contain negative numbers now. 32 bit constants on ARMmite or when using PC compiler. On ARMexpress
compiler constants while still limited to 16 bits are sign extended. ARMexpress was reporting missing
labels, but ARMmite was not, now fixed. Allow for multiple strings in data lists of SEROUT, I2COUT,...
Corrected error reporting of strings missing a final ". DEBUGIN now accepts negative numbers. INTERRUPT
keyword added. Support for ARMexpress LITE.

6.20

 Support for STOP as a breakpoint.

6.21

 SERIN_TIMEOUT added. Support for Wireless ARMmite. HWPWM supports duty cycles up to 40
seconds. Baud rates for SERIN/OUT 16,baud works again.

6.22

 Support for ARMweb.

6.23

 Refinements for ARMweb and STRSTR, STRCHR and TOUPPER string functions. SERIN, RXD was
filtering ESCAPE and ctl-C characters on pin 16 (UART0). This has been corrected.

6.24

 Added DIM name AS INTEGER and SUB .. ENDSUB local scope (as this is an ARMbasic.exe feature it
is backward compatible to 6.17 and later firmware versions.

 Firmware changes: only look for ESC/ctl-C for 500/1000 msec after reset (1000 for wireless versions).
RND function added (uses an LCG algorithm). HWPWM now uses times in microseconds rather than
duty-cycles.

6.25

 Added FUNCTION ... END FUNCTION, BYREF and BYVAL parameters for SUB/FUNCTION. This change
affects the compiler on the PC or ARMweb.

7.05

 Support for old and new firmware versions (new firmware moves built-in functions into #include'd
libraries).

 fixes to FUNCTIONs and SUBs. Null strings ("") allowed. String constants can be used in string BYREF
calls. DIM enforcement of variable declarations once used. VB style CALLs to FUNCTION/SUB, i.e. CALL
keyword is optional. Access to hardware registers via * is optimized.

7.09

 Firmware support and PC compiler support for interrupts (both are required).

 Improved PC compiler generation of constants.

7.10

Page 93

 Minor fixes in PC compiler for calls to SUB/FUNCT with constant strings, flag embedded chr(0) in string
expressions. Improved some error messages in PC compiler.

7.11

 Support for VB style CGIIN, MAIL, UDPIN and UDPOUT for ARMweb.

7.13

 Support for BAUD0 to change UART0 speed. TXD0 subroutine syntax supported.

 Support for UART1 added with BAUD1, RXD1 and TXD1

 Support for FREAD, WRITE to Flash.

 Both PC compiler and firmware are required

7.17

 reorganization for generic compiler.

7.18

 fix for ARMexpress LITE AD. Inline TIMER code added. and improved constant generation.

7.20

 Improved call/return. Expanded *pointer handling, and added ADDRESSOF operator.

 TX FIFO enabled.

7.41

 changed call/return mechanism for better performance.

8.02

 added support for Cortex parts.

8.05

 initial bug fixes for Cortex parts.

8.08

 added error reporting when an integer operand expected but not found.

8.11

 added IEEE 754 floating point, PRINTF, 7.50 version for ARM7 parts, trial versions

8.12

 released versions with floating point support, handles multiple IO port in banks of 32, June 2012.

8.15

 fixed clock setup for LPC1114, added support for LPC812.

8.20

 enabled TX interrupts on all UARTS, fixed sector mapping for LPC175x parts, added SLEEP keyword to
compiler to execute WFI instructions, changed SLEEP(x) routine in RTC.bas to IDLE(x).

8.21

 fixed FREAD for SuperPRO

8.40

 fix printf/sprintf bug changing width when rounding.

9.25

 compiler version separated from firmware version

9.39

 added ASM32 and allow 32 bit ops in ASM

Page 94

9.40

 added byte, halfword

9.41

 checks for unreachable code

9.42

 allow forward reference to SUB with no parameters

Page 95

Notices

 NO WARRANTY

 1. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. CORIDIUM PROVIDES THE PROGRAM "AS IS" WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 2. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL CORIDIUM BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO

USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE

OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR

OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The ARMbasic© compiler is distributed as part of hardware sold by Coridium Corp. such as the BASICchip.
All rights to the compiler are reserved under copyright to Coridium Corp. It may not be copied or reverse
engineered..

 Windows® is a registered trademark of Microsoft Corporation.
 VisualBASIC® is a registered trademark of Microsoft Corporation.
 BASIC Stamp® is a registered trademark of Parallax, Inc.
 PBASIC™ is a trademark of Parallax, Inc.
 I2C® is a registered trademark of Philips Corporation.
 1-Wire® is a registered trademark of Maxim/Dallas Semiconductor.
 SPI™ is a trademark of Motorola

 This documentation is released under the GFDL license.

Page 96

The Language

The Language
 Pre Processor
 Simple Statements
 Compound Statements
 Other Statements
 Functions
 Operators
 Data Types
 Alphabetical Keyword List

Page 97

https://www.coridium.us/coridium/shop/boards/bd05-stamp

Alphabetical Keyword List

A

 ABS

 AD

 ADDRESSO
F

 AND

 AS

 __ASM__

B

 BAUD

 BYREF

 BYVAL

C

 CALL

 CASE

 CHR

 CLEAR

 CONST

D

 DEBUGIN

 DIM

 DIR

 DO...LOOP

 DOWNTO

E

 ELSE

 ELSEIF

 END

 ENDFUNCTI
ON

 ENDIF

 ENDSELEC
T

 ENDSUB

 EXIT

F

 FILEOPEN

 FILEREADD
IR

 FILERREAD
BYTE

 FILEWRITE
BYTE

 FILEEOF

 FILECLOSE

 FOR

 FREAD

G

 GOSUB

 GOTO

H

 HEX

I

 IF...THEN

 IN

 INPUT

 INTEGER

 INTERRUPT

 IO

L

 LEFT

 LEN

 LIST

 LOOP

 LOW

M

 MAIL

 MAIN

 MOD

N

 NEXT

 NOT

O

 ON

 OR

 OUT

 OUTPUT

P

 PRINT

 PRINTF

R

 RETURN

 RIGHT

 RND

 RUN

 RXD

S

 SELECT
CASE

 SLEEP

 SPRINTF

 STEP

 STOP

 STR

 STRCOMP

 STRING

 SUB

T

 THEN

 TIMER

 TO

 TXD

U

 UDPIN

 UDPOUT

 UNTIL

V

 VAL

W

 WAIT

 WAITMICR
O

 WHILE

 WRITE

X

 XOR

other

 Operator
List

 * pointer

Page 98

 HIGH

Page 99

Preprocessor for BASIC

Most BASICs do not have a pre-processor. ARMbasic does not include one as part of the standard
language, but a version of the CPP has been included as part of the utilities.

The CPP (C preprocessor) is a very powerful tool, most users use just a fraction of the features, but if you
want the full story check this document from gcc .

As of version 5.14 of BASICtools, the type of CPU is used to generate a #define LPCxxxx that is added
before any of the user source code. This can be used to write code good for any of the CPUs as is done in
RTC.bas and HWPMW.bas libraries.

These are the most common directives that apply to use with ARMbasic: Unlike ARMbasic these keywords
and any parameters used in them ARE CASE SENSITIVE. The pre-processor is run on the PC, so it is not
available when using the built-in compiler of the ARMweb. However the compiler with preprocessor can be
used to generate files that can be downloaded to the ARMweb (use the Save Intermediates check box in the
Files menu of BASICtools).

#include "filename"

#include <filename>

#define

#ifdef

#ifndef

#if

#if (defined)

#else

#elif

#endif

#undef

#error

#warning

CPP operation

The CPP is a multi-step process carried out automatically by the BASICtools program. All operations are
done in a temp file directory created at %temp%Coridium/temp. All files in this directory will be deleted when
a File>>Load is performed by BASICtools.

It starts with your source file, and it will be copied into the %temp%/Coridium directory. When copied all
comments will be stripped. All included files will be also copied into this temp directory. Then the CPP will
be run on the files in that temp directory creating a __temp.bpp file that is the result of all the pre-processor
operations. This __temp.bpp file will be combined with other information as __temp.bas and then compiled
by ARMbasic.exe and its output is __temp.out. This __temp.out file is a modified Intel hex format of the
code generated by the source BASIC program. __temp.out will be downloaded to the ARM.

In addition __temp.bat and __errors.tmp files will be created. __temp.bat is a batch file used in the
compilation process. Errors from the compile or any of its steps will be contained in __errors.tmp.

Page 100

https://gcc.gnu.org/onlinedocs/gcc-4.2.0/cpp/index.html#Top

Page 101

#define

Syntax

#define IDname

 or

#define IDname expression

 or

#define IDname(param,...) expression (param,...)

Description

This statement directs the pre-processor to replace the word IDname with expression in the file before
compiling. This replacement can also contain parameters that will be replaced in corresponding positions
as defined in expression.

It may also be used to control #ifdef

Example

#define COMPILETHIS

#ifdef COMPILETHIS

#endif

Differences from other BASICs

 similar function in PBASIC
 no equivalent in Visual BASIC, but may be done with C-pre-processor

See also

 #ifdef

Page 102

#else #elif #endif

Syntax

#if expression

#else

#endif

 or

#if (defined name)

#elif expression

#endif

 or

#if (defined name)

#endif

Description

These statements complete or extend #if statements.

These statements may nest. And unlimited #elif are allowed.

Example

#if someNAME == 3

#elif someNAME == 4

#elif (defined COMPILETHIS) || (defined COMPILETHAT)

#else

#endif

Differences from other BASICs

 only #else available in PBASIC
 no equivalent in Visual BASIC, but may be done with C-pre-processor

See also

 #define

Page 103

#ifdef

Syntax

#ifdef IDname

#endif

 or

#ifndef IDname

#endif

Description

This statement directs the pre-processor to copy the contents of file between the ifdef and the endif into
the source to be compiled by the BASIC compiler, if IDname is defined . #ifndef copies the statements if
IDname has not been defined.

These statements may nest.

Example

#define COMPILETHIS

#ifdef COMPILETHIS

 ' ... will now be included

#endif

Differences from other BASICs

 no equivalent in PBASIC
 no equivalent in Visual BASIC, but may be done with C-pre-processor

See also

 #define

Page 104

#if

Syntax

#if expression

#endif

 or

#if (defined name)

#endif

Description

This statement directs the pre-processor to copy the contents of file between the if and the endif into the
source to be compiled by the BASIC compiler, if expressionis TRUE (non-zero).

#if (defined name) is equivalent to #ifdef, and can be used for more complex defines.

These statements may nest.

Example

#if someNAME == 3

#endif

#if (defined COMPILETHIS) || (defined COMPILETHAT)

#endif

Differences from other BASICs

 similar function in PBASIC
 no equivalent in Visual BASIC, but may be done with C-pre-processor

See also

 #define

Page 105

#include

Syntax

#include " filename"

#include <filename>

Description

This statement directs the pre-processor to copy the contents of filename into the source to be compiled
by the BASIC compiler. After that file is copied, the compilation continues on with the next statement in
the original program.

These statements may nest, as one file can include another which can include another...

When filename is enclosed in " ", the directory of the main BASIC program is searched. The filename
may contain a relative path, and remember that path is always relative to the directory of the main BASIC
program.

When the filename is enclosed in < >, the Program Files/Coridium/BASIClib directory is searched.

Normally #include statements are near the beginning of the BASIC program so that FUNCTIONs and
SUBs can be defined before their first use. When this is the case a MAIN: should be used so that code
does not try to execute the FUNCTION or SUB code inline.

Example

' include the module that controls VDRIVE

#include "Vdrive.bas"

' compiler picks up here

Differences from other BASICs

 no equivalent in PBASIC
 no equivalent in Visual BASIC, but may be done with C-pre-processor

See also

 #ifdef
 MAIN:

Page 106

#undef

Syntax

#undef IDname

Description

This statement directs the pre-processor to forget the word IDname for pre-processing.

So #ifdef IDname will now evaluate to FALSE.

Example

#define COMPILETHIS

 '...

#ifdef COMPILETHIS

 '... will now be included

#endif

#undef COMPILETHIS

#ifdef COMPILETHIS

 '... will now not be included

#endif

Differences from other BASICs

 no equivalent in PBASIC
 no equivalent in Visual BASIC, but may be done with C-pre-processor

See also

 #ifdef

Page 107

#warning #error

Syntax

#warning Message

 or

#error ErrorMessage

Description

#warning will issue a warning message visible in the progress window of BASICtools.

#error will generate a compiler error and prevent the BASIC program from being downloaded.

Example

#define COMPILETHIS

#ifdef COMPILETHIS
 '...
#else
 #error No code available for this option
#endif

Differences from other BASICs

 similar function in PBASIC
 no equivalent in Visual BASIC, but may be done with C-pre-processor

See also

 #ifdef

Page 108

Simple Statements

Statements are limited to a single line in ARMbasic, and are limited to 256 characters per line.

Simple Statements
 Assignment
 CALL
 Comments
 END
 EXIT
 GOSUB
 GOTO
 DEBUGIN
 PRINT
 READ
 RETURN

Page 109

assignment

Syntax

lvalue = expression

Description

This statement changes the value of the variable, string, array element or hardware register lvalue with
that of expression.

Example

DIM AB(10) AS STRING

AB = "this is a string"
AB(8) = "1" ' makes it this is 1 string

IO(0) = 1 'set pin 0 to be high

x = 100+(x*z-3)

Differences from other BASICs

 none from PBASIC
 some BASICs allow the archaic LET to precede this statement

See also

 Mathematical Functions

Page 110

GOSUB CALL

Syntax

GOSUB label

GOSUB (expression)

[GOSUB] function/sub

 or

CALL label

[CALL] function/sub

CALL (expression)

Description

GOSUB is supported for backward compatibility, now FUNCTIONs and SUBs would be the preferred
method.

Execution jumps to a subroutine marked by line label. Always use RETURN to exit a GOSUB, execution
will continue on next statement after GOSUB.

label may be defined as any valid identifier followed by a colon, and can be defined before or after the
GOSUB. Do not include the colon in the GOSUB.

GOSUB or CALL preceeding a FUNCTION or SUB is optional, and is allowed for backward compatibility
with other BASICs. When GOSUB/CALL a FUNCTION the return value is discarded.

CALL (expression) will compute the expression and then call the resulting address.

Forward declarations-

BASIC does not have a mechanism for defining SUB or FUNCTION ahead of their actual definition. But
for callback from an interrupt, a mechanism for calling a SUB has been added. The SUB can not accept
any parameters, and can not be a FUNCTION returning a value.

Example

' original BASIC syntax

MAIN:
GOSUB message
END

message:
PRINT "Welcome!
return

' example of callback

callbacks: 'a label that is never called, but prevents unreachable code warning
 GOSUB SUB11 ' declare SUB11 as a SUB that will be called before it is declared

Page 111

SUB sample
 GOSUB SUB11 ' call SUB11 before it is defined
ENDSUB

'...

SUB SUB11 ' eventually define SUB11
 PRINT 1234
ENDSUB

'...

Differences from other BASICs

 CALL used in Visual BASIC and version 7.00 makes the CALL optional for FUNCTION/SUB like
VB

 GOSUB used in PBASIC
See also

 GOTO
 RETURN

Page 112

comment

Syntax

 ' comment

Description

Comments in ARMbasic can follow a single quote character. All text after the single quote to the end of
the line is ignored by the compiler.

Example

AB = "this is a string" ' double quotes are for strings, including single character strings
x = x + 1 ' this is a comment for the instruction to increment x

' this entire line is a comment

Differences from other BASICs

 none from VisualBASIC
 none from PBASIC
 most early BASICs used the REM statement, which ARMbasic does not support

See also

 Simple Statements

Page 113

END

Syntax

END
Description

END is used to terminate the program.

When the ARMbasic is used in a control application, the END would not normally be encountered. As
most control applications would be a loop, as when a program ends it would require the user to restart or
a reboot.

There is an implied END added to any program. When a program ENDs, the last state of variables, IOs
and IO controls is maintained. If a program is then RUN again those states will probably be different than
running the program by hitting RESET. RESET sets all variables to 0, and all IOs to inputs. When a
program is restarted from RUN, the variables will be set to 0, but the last IO state will be maintained.

Example

PRINT "An unrecoverable error has occurred "
END

Differences from other BASICs

 none
See also

 STOP
 SLEEP

Page 114

EXIT

Syntax

EXIT
Description

Leaves a code block such as a DO...LOOP, FOR...NEXT, or a WHILE...LOOP block.
Example

'e.g. the print command will not be seen

DO
 EXIT ' Exit the DO...LOOP
 PRINT "i will never be shown"
LOOP

Differences from other BASICs

 None
See also

 DO
 FOR
 WHILE

Page 115

GOSUB CALL

Syntax

GOSUB label

GOSUB (expression)

[GOSUB] function/sub

 or

CALL label

[CALL] function/sub

CALL (expression)

Description

GOSUB is supported for backward compatibility, now FUNCTIONs and SUBs would be the preferred
method.

Execution jumps to a subroutine marked by line label. Always use RETURN to exit a GOSUB, execution
will continue on next statement after GOSUB.

label may be defined as any valid identifier followed by a colon, and can be defined before or after the
GOSUB. Do not include the colon in the GOSUB.

GOSUB or CALL preceeding a FUNCTION or SUB is optional, and is allowed for backward compatibility
with other BASICs. When GOSUB/CALL a FUNCTION the return value is discarded.

CALL (expression) will compute the expression and then call the resulting address.

Forward declarations-

BASIC does not have a mechanism for defining SUB or FUNCTION ahead of their actual definition. But
for callback from an interrupt, a mechanism for calling a SUB has been added. The SUB can not accept
any parameters, and can not be a FUNCTION returning a value.

Example

' original BASIC syntax

MAIN:
GOSUB message
END

message:
PRINT "Welcome!
return

' example of callback

callbacks: 'a label that is never called, but prevents unreachable code warning
 GOSUB SUB11 ' declare SUB11 as a SUB that will be called before it is declared

Page 116

SUB sample
 GOSUB SUB11 ' call SUB11 before it is defined
ENDSUB

'...

SUB SUB11 ' eventually define SUB11
 PRINT 1234
ENDSUB

'...

Differences from other BASICs

 CALL used in Visual BASIC and version 7.00 makes the CALL optional for FUNCTION/SUB like
VB

 GOSUB used in PBASIC
See also

 GOTO
 RETURN

Page 117

GOTO

Syntax

GOTO label
Description

Transfers code execution to a label.

GOTO's should be avoided and replaced with the more modern structures such as DO...LOOP,
FOR...NEXT, and WHILE...LOOP.

But occasionally GOTO can be the best way to change the program flow.

Example

GOTO message

message:
PRINT "Welcome!

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC

See also

 GOSUB

Page 118

DEBUGIN variable

Syntax

DEBUGIN variable | string
Description

Normally the programs running on an ARM are running stand-alone and without direct human input.
However, during the bring up phase a programmer may want to try different values. So a simplified
replacement of the normal BASIC INPUT has been added, called DEBUGIN.

INPUT is used to control the direction of one of the IO pins.

DEBUGIN has a limited edit capacity: it allows to erase characters using the backspace key. If a better
user interface is needed, a custom input routine should be used.

DEBUGIN may also read a string from the control serial port.

DEBUGIN does NOT support SINGLE variables.

On the ARMweb, this command is available only on the debug USB port.

Example

while 1
 debugin a
 print a*10
loop

Page 119

Differences from other BASICs

 DEBUGIN can take numbers in hexadecimal, binary or decimal format by using &Hhex, $hex
%bin

 PBASIC has a more complex DEBUGIN
 other BASICs calls this function INPUT

Page 120

PRINT

Syntax

PRINT [expressionlist] [(, | ;)] ...
Description

Prints expressionlist to screen.

Expressionlist can be constant string, constant numbers, variables, string variables or expressions
consisting of variables and numbers. Separated by either , or ;

Using a comma (,) as separator or in the end of the expressionlist will place the cursor in the next column
(every 5 characters), using a semi-colon (;) won't move the cursor. If neither of them are used in the end of
the expressionlist, then a new-line will be printed.

PRINT statements send data out the serial port. There is a 256 byte FIFO in the UART driver, once that
is filled BASIC will wait for space to be available. PRINT requires interrupts to be enabled (the default
case) as this buffer is emptied on the TX register available interrupt.

expressionlist will be evaluated as INTEGER or SINGLE depending on the type of the first variable or
constant in each expression.

INTEGER expressions will display as -2147483648 to 2147483647

SINGLE expressions will display 0.0 and the range from 0.100000 through 9999999. and the
corresponding negative range. Numbers outside that range will display as 1.000000E-39 to
9.999999E+38. Numbers out of range of valid values will display as Inf (infinity) or Nan (not a number).
Numbers are also rounded before printing to the 7th significant digit.

Example

DIM AB(10) AS STRING
'' new-line"Hello World!"'' no new-line
PRINT "Hello";AB; "!";
PRINT

'' column separator
PRINT "Hello!", "World!"

PRINT "3+4 =",3+4

y=4321
x=1234
PRINT "sum=",x+y

Differences from other BASICs

 none from Visual BASIC
 PBASIC uses DEBUGIN and a non-standard syntax

See also

 DEBUGIN the opposite function that receives user input

Page 121

RETURN

Syntax

RETURN

inside function-
 RETURN expression | string-expression

Description

RETURN is used to return control back to the statement immediately following a previous GOSUB call.
When used in combination with GOSUB, A GOSUB call must always have a matching RETURN
statement, to avoid stack

If the RETURN is inside a function, an integer, single or string expression is expected.

RETURN will exit a FUNCTION or SUB even when inside a component statement such as WHILE, FOR,
SELECT ...

If a RETURN is executed without a corresponding GOSUB or CALL, a Prefetch Abort error will stop your
program.

Example

PRINT "Let's Gosub!"
GOSUB MyGosub
PRINT "Back from Gosub!"
END

MyGosub:
PRINT "In Gosub!"
RETURN

Differences from other BASICs

 a subset of the RETURN of Visual BASIC
 none from PBASIC

See also

 GOSUB.

Page 122

Compound Statements

Compound Statements
 DO...LOOP
 FOR...NEXT
 IF...THEN
 SELECT CASE
 WHILE...LOOP
 EXIT

Page 123

DO...LOOP

Syntax

[DO] WHILE condition
 [statement block]
LOOP

DO
 [statement block]
[LOOP] UNTIL condition

DO
 [statement block]
LOOP

Description

Repeats a block of statements until/while the condition is met. The three above syntaxes show the
different types. The DO .. LOOP without a WHILE or UNTIL will loop forever, unless an EXIT statement is
executed.

An EXIT is the proper way to leave a DO...LOOP, you can also use a GOTO or RETURN statement.

Example

'This will continue to print "hello" on the screen until the condition (a > 10) is met.

a = 1
DO
 PRINT "hello"
 a += 1
LOOP UNTIL a > 10

Differences from other BASICs

 Some BASICs allow interchangeability of UNTIL as the equivalent of NOT WHILE

See also

 EXIT
 FOR...NEXT
 WHILE...LOOP

Page 124

FOR...NEXT

Syntax

FOR counter = startvalue TO endvalue [STEP stepvalue]
 [statement block]
NEXT [counter]

FOR counter = startvalue DOWNTO endvalue [STEP stepvalue]
 [statement block]
NEXT [counter]

Description

A FOR [...] NEXT loop initializes counter to startvalue, then executes the statement block 's,
incrementing counter by stepvalue until it reaches endvalue. If stepvalue is not explicitly given it will set to
1.

If the DOWNTO is used, then the counter is decremented by the stepvalue or 1 if none is specified.

An EXIT is the proper way to leave a FOR...NEXT, you can also use a GOTO or RETURN statement.

Example

PRINT "counting from 3 to 0, with a step of -1"
FOR i = 3 DOWNTO 0 STEP 1
 PRINT "i is "; i
NEXT i

Differences from other BASICs

 PBASIC does not use DOWNTO, and must specify a negative step
 PBASIC does not allow the variable in the NEXT statement (while this is not necessary it is good

coding practice)
See also

 STEP
 NEXT
 DO...LOOP
 EXIT

Page 125

DOWNTO

Syntax

FOR counter = startvalue DOWNTO endvalue [STEP stepvalue]
 [statement block]
NEXT [counter]

Description

This has been added for FOR loops that count down, which are ambiguous when startvalue or endvalue
are variables.

Example

PRINT "counting from 3 to 0, with a step of -1"
FOR i = 3 DOWNTO 0 STEP 1
 PRINT "i is "; i
NEXT i

Page 126

STEP

Syntax

FOR iterator = initial_value TO end_value STEP increment

Description

In a FOR statement, STEP specifies the increment of the loop iterator with each loop.
If no STEP value is specified in the FOR loop the default of 1 is used. The STEP value should always be
positive, for DOWNTO it is subtracted from the index.

Example

FOR I=1 TO 10 STEP 2
NEXT

FOR I=120 DOWNTO 10 STEP 20
NEXT

See also

 FOR

Page 127

TO

Syntax

FOR iterator intial_value TO ending_value
...
NEXT [iterator]

SELECT case_comparison_value
CASE lower_bound TO upper_bound
...
END SELECT

Description

The TO keyword is used to define a certain numerical range. This keyword is valid only if used with FOR
... NEXT and SELECT / CASE .

In the first syntax, the TO keyword defines the initial value of the iterator in a FOR statement, and the
ending value.

In the second syntax, the TO keyword defines lower and upper bounds for CASE comparisons.
Example

'' this program uses bound variables along with the TO keyword to create an array, store random

FOR it = minimum_temp_count TO maximum_temp_count

 '' display a message based on temperature using our min/max danger zone bounds
 SELECT array(it)
 CASE min_low_danger TO max_low_danger
 COLOR 11
 PRINT "Temperature" ; it ; " is in the low danger zone at" ; array(it) ; " degrees!"
 CASE min_medium_danger TO max_medium_danger
 COLOR 14
 PRINT "Temperature" ; it ; " is in the medium danger zone at" ; array(it) ; " degrees!"
 CASE min_high_danger TO max_high_danger
 COLOR 12
 PRINT "Temperature" ; it ; " is in the high danger zone at" ; array(it) ; " degrees!"
 CASE ELSE
 COLOR 3
 PRINT "Temperature" ; it ; " is safe at" ; array(it) ; " degrees."
 END SELECT

NEXT it

SLEEP

Differences from other BASICs

 none
See also

 FOR...NEXT
 SELECT CASE

Page 128

IF...THEN

Syntax

IF expression THEN statement(s) [ELSE statement(s)]

IF expression [THEN]
 statement(s)
[ELSEIF expression [THEN]
 statement(s)]
[ELSE
 statement(s)]
ENDIF

Description

IF...THEN is a way to make decisions. It is a mechanism to execute code only if a condition is true, and
can provide alternative code to execute based on more conditions.

The syntax allows single line IF..THEN, or multi-line versions that end with ENDIF.

The single line version only allows simple statements. To use nested IFs the multi-line version must be
used.

Version 7.00 allows ENDIF or END IF

Example

'e.g. here is a simple "guess the number" game using if...then for a decision.

PRINT "guess the number between 0 and 10"

DO 'Start a loop
 PRINT "guess"
 DEBUGIN y 'Input a number from the user
 IF x = y THEN
 PRINT "right!" 'He/she guessed the right number!
 EXIT
 ELSEIF y > 10 THEN 'The number is higher then 10
 PRINT "The number cant be greater then 10! Use the force!"
 ELSEIF x > y THEN
 PRINT "too low" 'The users guess is to low
 ELSEIF x < y THEN
 PRINT "too high" 'The users guess is to high
 ENDIF
LOOP 'Go back to the start of the loop

Differences from other BASICS

 none
See also

 DO...LOOP
 SELECT CASE

Page 129

SELECT [CASE]

Syntax

SELECT [CASE] expression
[CASE expressionlist]
 [statements]
[CASE ELSE]
 [statements]
ENDSELECT

Description

Select case executes specific code depending on the value of an expression. If the expression matches
the first case then it's code is executed otherwise the next cases are compared and if one case matches
then its code is executed. If no cases are matched and there is a 'case else' on the end then it will be
executed, otherwise the whole select case block will be skipped.

Syntax of an expression list:
expression [{TO expression | relational operator expression}][, ...]

example of expression lists:
CASE "A" ' the "A" is equivalent to &H41, multi-character strings can not be used in
CASE statements
CASE 5 TO 10
CASE > "e"
CASE 1, 3 TO 10
CASE 1, 3, 5, 7, 9

The SELECT expression must be an INTEGER, and the CASE expressions must also be INTEGER.

You can exit a SELECT/ CASE with a GOTO or RETURN statement.

Example

PRINT "Choose a number between 1 and 10: "
DEBUGIN choice
SELECT choice
CASE 1
 PRINT "number is 1"
CASE 2
 PRINT "number is 2"
CASE 3, 4
 PRINT "number is 3 or 4"
CASE 5 TO 10
 PRINT "number is in the range of 5 to 10"
CASE <= 20
 PRINT "number is in the range of 11 to 20"
CASE ELSE
 PRINT "number is outside the 1-20 range"
ENDSELECT

Differences from other BASICs

 SELECT CASE is used in Visual BASIC
 SELECT is used in PBASIC
 either is allowed in ARMbasic
 Visual BASIC uses an optional IS before relational operators

Page 130

 ENDSELECT is used to terminate the SELECT in both ARMbasic and PBASIC
 END SELECT (separate words) are used in Visual BASIC and are allowed in ARMbasic

See also

 IF...THEN

Page 131

TO

Syntax

FOR iterator intial_value TO ending_value
...
NEXT [iterator]

SELECT case_comparison_value
CASE lower_bound TO upper_bound
...
END SELECT

Description

The TO keyword is used to define a certain numerical range. This keyword is valid only if used with FOR
... NEXT and SELECT / CASE .

In the first syntax, the TO keyword defines the initial value of the iterator in a FOR statement, and the
ending value.

In the second syntax, the TO keyword defines lower and upper bounds for CASE comparisons.
Example

'' this program uses bound variables along with the TO keyword to create an array, store random

FOR it = minimum_temp_count TO maximum_temp_count

 '' display a message based on temperature using our min/max danger zone bounds
 SELECT array(it)
 CASE min_low_danger TO max_low_danger
 COLOR 11
 PRINT "Temperature" ; it ; " is in the low danger zone at" ; array(it) ; " degrees!"
 CASE min_medium_danger TO max_medium_danger
 COLOR 14
 PRINT "Temperature" ; it ; " is in the medium danger zone at" ; array(it) ; " degrees!"
 CASE min_high_danger TO max_high_danger
 COLOR 12
 PRINT "Temperature" ; it ; " is in the high danger zone at" ; array(it) ; " degrees!"
 CASE ELSE
 COLOR 3
 PRINT "Temperature" ; it ; " is safe at" ; array(it) ; " degrees."
 END SELECT

NEXT it

SLEEP

Differences from other BASICs

 none
See also

 FOR...NEXT
 SELECT CASE

Page 132

WHILE...LOOP

Syntax

[DO] WHILEcondition
 [statements]
LOOP

Description

WHILE [...] LOOP will repeat the statements between WHILE and LOOP, while the condition is true.

If the condition isn't true when the WHILE statement begins, none of the statements will be run.

The DO is optional in ARMbasic.

WHILE loops have the lowest overhead of all looping constructs, so they are faster than FOR or DO loops

An EXIT is the proper way to leave a WHILE...LOOP, you can also use a GOTO or RETURN statement.

Example

' a good way to time operations

x = 1000000

while x
 x -= 1 ' decrement x
 y = y * z ' do something to measure here -- like multiply for instance
loop

 ... Finished in 181 msec (on PROplus)

so with loop overhead of 121 msec, that's 60 nsec to multiply 2 numbers

Differences from other BASICs

 Visual BASIC uses the syntax DO WHILE ... LOOP, which is allowed by ARMbasic
 PBASIC also requires the DO
 Some BASICs use WHILE ... WEND

See also

 DO...LOOP
 EXIT

Page 133

Other Statements

Other Statements

 __ASM__
 CLEAR
 CONST
 DIM
 END
 label:
 MAIN
 ON
 RUN
 STOP

Page 134

__ASM__

Syntax

__ASM__ (expression)

__ASM32__ (expression)

Description

__ASM__ tells the compiler to compile the expression into the program

expression is a number, and represents the 16 bit opcode that is added to the code. If the value of
expression is a 32 bit constant (>= &H10000), then 2 16 bit values are added to the code. This handles
long jumps

We currently don't have a symbollic assembler and the user has to generate the expression that
represents an ARM Thumb opcode. Details on the Thumb opcodes can be found here . Recently we
have created a macro library that covers ARM instructions we have used or think are commonly used. It
will be part of the release, or can be found at the forum .

__ASM32__ will evaluate as a 32 bit word and is aligned to a word boundary and added to the code. The
alignment is done by inserting a NOP if necessary, but the intention of this is for PC relative constants
which must be word aligned. While it can be used for general assembly opcodes the simple __ASM__ is
better.

To save some needed assembly statements, __ASM__ can now be used as an rvalue. This actually
does nothing and the result is whatever is in R7

A number of ARM instructions have been encoded by the #include file ASMinlineBASIC.bas

Example

#include "ASMinlineBASIC.bas" ' get macros for most ARM instructions

...

 ASM_LDR_SPI(7,60) ' r7 now has PC for routine that INTERRUPT SUB interrupted
 savePC =__ASM__ ' save it in savePC
...
 ASM_LDR_PC(6,2) ' load R6 with PC relative constant &H12345678
 __ASM32__(&H12345678)

 under the hood --

For the Cortex parts, the BASIC compiler saves the value computed in the last statement in R7. These
registers uses are subject to change.

R4 is used in index operations and pointers

R6 is normally the second operand in expression evaluation, and is combined with R7 to produce the last
value of an expression

R5 is used in some string operations

R9 can be used as a temporary variable in complex expressions that require intermediate values to be
saved on the stack.

Page 135

http://www.coridium.us/docs/ARM7thumb.pdf
http://www.coridium.us/docs/ARM7thumb.pdf
https://www.coridium.us/forum/viewtopic.php?p=420

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 EXIT

Page 136

CONST

Syntax

CONST symbolname = value

CONST arrayname = { value [, valuelist] }

 valuelist = value [, value] ' up to 60 values per line

 value = integernumber | floatingpointnumber

CONST bytearrayname AS BYTE = { value [, valuelist] }

CONST stringname = "any string"

Description

Declares compiler-time constant symbols that can be an integer.

More complex CONST can now be handled by #define -- see pre-processor

under the hood-

Single constants do not take up any program space as they are maintained by the PC Compiler.

Constants can be 32 bit values using the PC ARMbasic compiler and can be integer or floating point
numbers. but constants are limited to 16bit values for the on chip ARMweb compiler. A floating point
number is any number that contains a decimal point, without a decimal point numbers are assumed to be
integers. If you want the floating point representation of an integer an example would be 123. , -455. ,
 0. , 122.0 or 0.0 .

Array constants can be 8 or 32 bit values and are stored in high memory along with constant strings and
do take up Flash space available on the ARM. You can use the constants in your program as if it were an
array.

Constant arrays can span more than one line, the compiler, it will keep reading lines until the final } is
found. This feature was added in version 8.16c of the compiler.

Constants when used are not type checked or type converted, so if you try to assign an integer constant
to a single variable, you will get odd looking results.

Example

CONST REPS = 20

CONST repeatedstring = "something used more than once"

DIM X as SINGLE
DIM I

CONST factorials = { 1., 1., 2., 6., 24. , 120. , 720., 5040. , 40320. , 362880. , 3628800. , 39916800. ,
 479001600. ,
 6227020800. , 87178291200. , 1307674368000. , 20922789888000.
, 355687428096000. ,
 6402373705728000. ,121645100408832000. , 2432902008176640000. ,
51090942171709400000. ,
 1124000727777610000000. , 25852016738885000000000. ,

Page 137

620448401733239000000000. ,
 15511210043331000000000000. , 403291461126606000000000000. ,
10888869450418400000000000000. ,
 304888344611714000000000000000. , 8841761993739700000000000000000. ,
265252859812191000000000000000000.,
 8222838654177920000000000000000000. ,
263130836933694000000000000000000000. ,
 8683317618811890000000000000000000000.
, 295232799039604000000000000000000000000. }

PRINT repeatedstring

FOR I=0 to REPS
 X = factorials (i)
 PRINT I,X
NEXT I

PRINT repeatedstring

--

something used more than once
0 1.
1 1.
2 2.
3 6.
4 24.
5 120.
6 720.
7 5040.
8 40320.
9 362880.
10 3628800.
11 39916800.
12 479001600.
13 6227020800.
14 87178291200.
15 1307674368000.
16 20922789888000.
17 355687428096000.
18 6402373705728000.
19 121645100408832000.
20 24329020081766400001
something used more than once

Differences from other BASICs

 Visual BASIC allows more complex CONST declarations
 syntax in PBASIC is symbolname CON value

See also

 Preprocessor

Page 138

DIM

Syntax

Declaring Integers:
 DIM symbolname [AS INTEGER] ' INTEGER type is assumed if no type is specified

Declaring Floating point (requires firmware 7.50 or 8.11)
 DIM symbolname, symbolname2, symbolname3 AS SINGLE

Declaring Arrays:
 DIM symbolname (max_element)
 DIM symbolname (max_element) AS BYTE

Declaring Strings:
 DIM symbolname$ (max_element)
 DIM symbolname (max_element) AS STRING

Description

Declares a named variable and allocates memory to accommodate it. Though ARMbasic does not require
the declaration of integer variables, DIM is used to declare floating-point singles or arrays, arrays of
integers, or strings (arrays of bytes). The size is the max_element in the array plus 1. This allows
indexing from 0 to max_element .

For backward compatibility strings may have the last character the dollar sign $. Multiple variables of the
same type may be defined on a single DIM statement, that includes both individual variables and arrays of
the same type.

Memory for simple variables is allocated from the start of a heap, and strings or arrays are allocated from
the top or end of the heap. Strings are packed as bytes and always word aligned, you must allow enough
space to accommodate the expected maximum size of the string plus 1 byte for a termination (0)
character. String operators rely on the terminator. Strings may not exceed 255 characters.

Simple INTEGER variables will be automatically declared on first use, unless you use DIM symbolname
AS INTEGER. At which point all subsequent integers must be declared using a DIM. Classic BASIC
declared all variables automatically, but VB requires them all to be declared with a DIM statement. The
advantage in VB is that if you mistype a variable name it will be flagged as undefined rather than
becoming a newly automatically declared INTEGER variable. As the authors (read me) came from
classic BASIC, the automatic declaration is default, but if you don't like that just use a DIM to declare an
INTEGER variable early in the program. That statement should be after the #includes as many libraries
use auto-declaration.

Floating point SINGLE use a single word of storage and are allocated from the start of the heap.

SUB and FUNCTION procedures also use DIM between SUB/FUNCTION .. ENDSUB/ENDFUNCTION.
Those variables will be local to the procedure. Using DIM here does not change whether all subsequent
integers must be declared using a DIM or not. In other words the state whether DIM is required is saved
upon entering a SUB procedure and is restored at the ENDSUB.

Arrays of 8bit values can be declared AS BYTE. BYTE arrays are not limited to 255 characters.
However, string operations and functions ARE still limited to 255 bytes.

Example

DIM a$ (10)
DIM b (20) AS STRING

Page 139

DIM c (300) AS BYTE

a$ = "Hello World"
b = "... from ARMbasic!"
c = a$ + b ' you can mix STRING and BYTE arrays, but the results are limited to 255 characters
and are truncated at the first 0

print c ' displays Hello World... from ARMbasic

Differences from other BASICs

 Like Visual BASIC the first element uses an offset of 0, but also memory is allocated for 0, 1 to

size elements. This is backward compatible with earlier BASICs which indexed from 1 to size .
 PBASIC uses the syntax symbolname VAR WORD | BYTE [(size)]

See also

Page 140

label:

Syntax

name :
Description

GOTO and GOSUB go to a label. Somewhere in the code is that target label. A label can be any valid
variable name followed by a colon : . A label can be the only element on a line.

MAIN: is a special case of label that will start execution of the program at somewhere other than the first
line of code.

Example

 '...
GOSUB sayHello

 '...
END

 '...

sayHello:
PRINT "Hello"
RETURN

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC

See also

 MAIN

Page 141

MAIN

Syntax

MAIN:
Description

Normally an ARMbasic program will start at the first statement in the BASIC source. This can be
changed by having a MAIN: somewhere else in the program. When a MAIN: does exist, the program will
begin at this point.

MAIN: is useful for programs that use FUNCTIONs or SUBs and have those FUNCTIONs or SUBs at the
beginning of the source. This also includes FUNCTIONs or SUBs that are #include'd in the source.

Statements before the MAIN will not be executed, unless they are called or GOTO'd. But those
statements can be used to define variables or SUB or FUNCTION.

A MAIN is not required in a program, but the compiler assumes that there will be one. To get around that
you can have a label at the start of the program and execution will begin there.

Any inline code before MAIN will be flagged by the compiler as UNREACHABLE . If you do not have a
MAIN and want to execute code inline, place a label (any name OK) at the start of your code.

Example

SUB SUB1:
 PRINT "Hello from sub1"
END SUB

MAIN:
GOSUB SUB1
END

'or another example:

X = 1234 ' this defines X as an INTEGER variable without using a DIM

MAIN:

PRINT x ' will print 0, because while X is defined the assignment of 1234 never happened

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC

See also

 EXIT

Page 142

__MAP__

Syntax

__MAP__ [CODE const_expression] [CONST const_expression] [DATA const_expression] [STRING
const_expression]

Description

__MAP__ tells the compiler to reserve space, by advancing the 4 pointers. In all cases it must be a
constant expression. There is no error checking, so the user is responsible for the validity of the values.

All of these values are byte values. For CODE sets the compiler program counter. CONST sets the
pointer for constant strings and CONST arrays, it counts down from the end of Flash memory. Both of
these addresses are byte addresses and are absolute.

DATA sets the pointer for INTEGER and SINGLE variables. STRING sets the pointer for arrays of BYTE,
INTEGER or FLOAT and counts down from the end of the variable space. These are byte addresses, but
are relative to the space that BASIC allocates for variables.

When used with no parameters, the compiler will report where the various pointers are left
following the compile.

This allows you to reserve space for Flash Write , or for implimenting program overlays.

Example

The values for the above map represent are based on the SuperPRO with 8.25 firmware.

The first program writes code to the first Flash sector then calls code in the second Flash sector

share_x = 22
share_y = 33

print "start the program and call overlay"

Page 143

gosub start1
print "we are back"

print share_x

end ' if you don't have an END here or a loop the program will drop through into unprogrammed
memory

__MAP__ CODE &H11000 CONST &H27000

start1:

print "in the overlay"

return

This program when run shows

start the program and call overlay
in the overlay
we are back
22

Now overlay the second Flash sector with this program

DIM share_x ' to access global variables in the original program, they must be declared in the
same order
DIM share_y

 ' if you declare anything that would produce code before the __MAP__ you will overlay the 1st
sector -- which you don't want to do

__MAP__ CODE &H11000 CONST &H27000

start1:

'print "THIS IS A NEW OVERLAY"

share_x = share_y

return

Now when run it shows, and it shows the access to share_x was changed

start the program and call overlay
we are back
33

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 EXIT

Page 144

ON (only on ARM7 parts with integer BASIC firmware)

ON is NOT used with BASICchip, PROstart, PROplus and SuperPRO see INTERRUPT SUB

ON is no longer supported on the Floating point versions of firmware, Use the INTERRUPT SUB or
revert to the integer version of firmware can be found in the Coridium Forum.

Syntax

ON TIMER msec label

 or

ON EINT0|EINT1|EINT2 RISE|FALL|HIGH|LOW label

Description

These statements will initialize interrupt service routines so that when the interrupt occurs the code at
label will be executed. Label must have been pre-defined and can either be a SUB (without parameters)
or code beginning with a label: and ending in a RETURN. The interrupt response time is approximately 3
usec. Other interrupts may make this time longer.

TIMER interrupts will occur every msec milliseconds. msec may be a variable or constant, expressions
are not allowed. The value for msec must be greater than 1. If TIMER interrupts are used, then only 4
hardware PWM channels are available.

EINT0 and EINT2 are 2 pins that will interrupt when the defined event occurs. RISE and FALL are the
preferred method and will generate interrupts on rising or falling edges on those 2 pins. HIGH and LOW
are supported, but if the pin remains in that state interrupts will be continuously generated.

EINT1 is connected to the RTS line of the PC, and is normally high, so it can be used by a program on
the PC to interrupt the ARMmite, rather than having to reset the board. EINT1 is also available on the
ARMexpress modules (pin 21), and should also be kept normally high if used.

Each time the ON statement is executed the interrupt will be initialized, so it is possible to change
routines within the program. Multiple interrupts can be used, but they are serviced in the order received,
and each interrupt service routine will complete before the next one is handled (interrupts that occur while
one is being serviced will be handled after the current interrupt is processed).

Interrupt routines should normally be short and simple. The state of the other user BASIC code will be
restored after the interrupt, with the exception of string functions, which should NOT be done inside an
interrupt. PRINT statements use strings, so other than a temporary debug to see if the interrupt occurs,
they should not be inside an interrupt routine.

To disable the interrupt use the following #define

#define VICIntEnClear *&HFFFFF014

#define TIMERoff VICIntEnClear = &H20
#define EINT0off VICIntEnClear = &H4000
#define EINT1off VICIntEnClear = &H8000
#define EINT2off VICIntEnClear = &H10000

ON added in version 7.09

The LPC2106 based ARMexpress supports ONLY ON LOW, due to hardware limitations.

ON is a statement that is executed, so if multiple ON statements are in a program the last statement
executed will be active command.

Page 145

http://www.coridiumcorp.com/forum/viewtopic.php?f=10&t=710&p=2300#p2300

Cortex M3 and M0 do not support ON, but use INTERRUPT SUB

Example

IO15up = 0 ' serves to declare IO15up

 '...
SUB IO15count
 IO15up = IO15up + 1
ENDSUB

 '...
main:

ON EINT2 RISE IO15count

IO15up = 0
while 1
 if IO15up <> lastIO15count then
 print IO15up
 lastIO15count = IO15up
 endif

 '...

loop

every20msec:
 checkIO0 = checkIO0 + (IO(0) and 1)
 IO0samples = IO0samples +1
RETURN

 '...
main:

ON TIMER 20 every20msec

 '...

PRINT "Percentage of time IO0 is HIGH =", 100*checkIO0 / IO0samples

 '...

Differences from other BASICs

 no equivalent in VB
 no equivalent in PBASIC

See also

 GOTO
 RETURN

Page 146

STOP

Syntax

STOP
Description

Halt execution of the program.

STOP functions like a breakpoint when under control of BASICtools. When the STOP is executed the
BASIC program halts execution, but allows BASICtools to dump variable values. Also in BASICtools
RUN will resume execution at the statement following STOP.

You may also read and write memory locations using @ and ! For these commands, hexadecimal
numbers are assumed, you should not type $ or &H.

@ hex-address [hex-number] ' will display hex-number locations starting at hex-addr, if hex-number
is omitted, 8 locations are displayed.

! hex-address hex-value ' will write hex-value into the location hex-address

^ ' will continue user BASIC program execution

STOP will normally STOP a running program. But if your program causes an exception (read/write
address that does not exist, illegal instruction or others), typically a FAULT will be displayed and an
address where it occurred. You can look into the Code addresses to see which routine it was in.

But what if the program does not STOP. We call these runaway programs. These programs typically are
flooding the serial communication channel, and this can cause issues with the driver or BASICtools Tcl
program, having a hard time keeping up, In these cases, the program can usually be STOP'd by
disconnecting the USB connection and reconnecting and then going into the Options Menu choose Serial
Port and reselect the COM port you were using. In this case the disconnect lets Windows clear the
serial driver, and Tcl to close that serial port. Re-opening the serial port will start the board up again, but
will send a character to halt the user program.

Example

'If pin 2 is low halt the processor
IF IO(2) = 0 THEN
 PRINT "Processor Stopped"
 PRINT "Press Reset to Continue"
 STOP
ENDIF

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC, though the breakpoint features are not supported

See also

 EXIT

Page 147

Debugging

 ARMbasic is an incremental compiler, meaning that you can enter a portion of a program, run it, check
some variable values, enter some more code and run it again... This operates much like an interpreter, so
that debugging of code can be done very quickly.

There are a number of operations that aid during the debug phase of programming an ARMexpress. These
allow you to read and write memory locations which also includes the registers of the many ARM peripherals.

Debugging Functions

 ! - write to memory
 @ - read memory
 CLEAR
 LIST
 STOP
 RUN

Page 148

@ (dump memory)

Syntax

@ [expression] [length]
Description

This command will dump ARM memory starting at expression for optional length words. It is useful for
debugging direct control of the ARM peripherals, or looking at memory. If expression is omitted and
length was non-zero , then the next length of memory will be displayed.

Normally @ expression length will be used first, with following pages displayed by typing @ without the
expression.

Expression and length are hex values without the leading &H or $..

Example

The following example displays the area of ARM memory corresponding to the PWM registers. Memory
address on the left, followed by 4 or 8 words of memory displayed in hex.

@e0014000 10

EO014000: 00000000 00000001 04BFE6BB 0000E663 0000A516 00000000 00000000
00000000
E0014020: 00000000 00000001 04BFE6BB 0000E663 0000A516 00000000 00000000
00000000

The display above shows the 16 words following hex address e0014000. With the display showing
addresses to the left of the : and 32bit word values to the right. Versions of firmware before 8.11 and 7.53
do not show the addresses.

Differences from other BASICs

 non-existent in Visual BASIC or PBASIC
See also

 ! set memory

Page 149

! (set memory)

Syntax

! hex-number hex-number2
Description

This command will write hex-number2 into location hex-number in ARM memory. It is useful for
debugging direct control of the ARM peripherals.

Expression can only be a hex value without the leading $ or &H and no spaces between the ! and the
hexvalue. The ARMmite does not list the address or the ASCII values.

This function will be added in version 7.47 for ARM7 and 8.07 for Cortex parts. And also requires
BASICtools 5.9 or later.

Example

The following example displays the area of ARM memory corresponding to the PWM registers. Memory
address on the left, followed by 4 or 8 words of memory displayed in hex.

@e0014000

E0014000: 00000000 00000001 04BFE6BB 0000E663 0000A516 00000000 00000000
00000000

!e0014000 1234567

@e0014000

E0014000: 01234567 00000001 04BFE6BB 0000E663 0000A516 00000000 00000000
00000000

Differences from other BASICs

 non-existent function in Visual BASIC or PBASIC
See also

 @ (dump memory)

Page 150

CLEAR

Syntax

CLEAR

Description

This is a BASICtools command that erases the screen and the buffer in PC memory. It is useful when
you are typing in short programs a line at a time.

It does not affect the current BASIC program in ARM memory, to erase that program, you can hit or type
clear, and then RUN a short program like

 PRINT

That will replace the program in ARM memory with a short do nothing program.

It should NOT be used as a statement inside a BASIC program.

Example

Example

PRINT "hi there"
RUN

hi there

CLEAR

Differences from other BASICs

 same as many BASICs
 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also
 RUN

Page 151

DEBUGIN variable

Syntax

DEBUGIN variable | string
Description

Normally the programs running on an ARM are running stand-alone and without direct human input.
However, during the bring up phase a programmer may want to try different values. So a simplified
replacement of the normal BASIC INPUT has been added, called DEBUGIN.

INPUT is used to control the direction of one of the IO pins.

DEBUGIN has a limited edit capacity: it allows to erase characters using the backspace key. If a better
user interface is needed, a custom input routine should be used.

DEBUGIN may also read a string from the control serial port.

DEBUGIN does NOT support SINGLE variables.

On the ARMweb, this command is available only on the debug USB port.

Example

while 1
 debugin a
 print a*10
loop

Page 152

Differences from other BASICs

 DEBUGIN can take numbers in hexadecimal, binary or decimal format by using &Hhex, $hex
%bin

 PBASIC has a more complex DEBUGIN
 other BASICs calls this function INPUT

Page 153

LIST

Syntax

LIST

Description

When typing commands into BASICtools a line at a time, use LIST to see what was typed.

Those lines can be captured into a file for further editing either by cut and paste or opening the Edit File
option in the Edit menu.

This command is not used by the BASIC compiler, so it should not be included in a file to be compiled

Example

for i=1 to 10
 print i
next i

 '...

LIST
for i=1 to 10
 print i
next

Page 154

RUN

Syntax

RUN
Description

RUN will compile the program and write it into Flash Memory. Then it will execute the program which has
been saved.

Now that the program is in Flash it will be executed when the board is either reset or powered on.

BASICtools can STOP a program that is being executed from Flash.

RUN is a command line function, it should NOT be included in a BASIC program. It is equivalent to the
RUN button in the BASICtools. Your BASIC program will start automatically when the ARM is reset.

Example

PRINT "hi there"
RUN
CLEAR

Differences from other BASICs

 same as many BASICs
 no equivalent in Visual BASIC
 no equivalent in PBASIC, done with the editor

See also

 CLEAR

Page 155

STOP

Syntax

STOP
Description

Halt execution of the program.

STOP functions like a breakpoint when under control of BASICtools. When the STOP is executed the
BASIC program halts execution, but allows BASICtools to dump variable values. Also in BASICtools
RUN will resume execution at the statement following STOP.

You may also read and write memory locations using @ and ! For these commands, hexadecimal
numbers are assumed, you should not type $ or &H.

@ hex-address [hex-number] ' will display hex-number locations starting at hex-addr, if hex-number
is omitted, 8 locations are displayed.

! hex-address hex-value ' will write hex-value into the location hex-address

^ ' will continue user BASIC program execution

STOP will normally STOP a running program. But if your program causes an exception (read/write
address that does not exist, illegal instruction or others), typically a FAULT will be displayed and an
address where it occurred. You can look into the Code addresses to see which routine it was in.

But what if the program does not STOP. We call these runaway programs. These programs typically are
flooding the serial communication channel, and this can cause issues with the driver or BASICtools Tcl
program, having a hard time keeping up, In these cases, the program can usually be STOP'd by
disconnecting the USB connection and reconnecting and then going into the Options Menu choose Serial
Port and reselect the COM port you were using. In this case the disconnect lets Windows clear the
serial driver, and Tcl to close that serial port. Re-opening the serial port will start the board up again, but
will send a character to halt the user program.

Example

'If pin 2 is low halt the processor
IF IO(2) = 0 THEN
 PRINT "Processor Stopped"
 PRINT "Press Reset to Continue"
 STOP
ENDIF

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC, though the breakpoint features are not supported

See also

 EXIT

Page 156

Data Abort

Prefetch Abort

Undefined Routine

Description

Data Aborts are generated when a user's BASIC program accesses non-existent memory. One way is
accessing an array with an index that is larger than available RAM space. Another is using a pointer for
hardware access, but with a value that does not correspond to a valid location.

Prefetch aborts indicate an attempt to access an instruction from non-existent memory. Prefetch aborts
can occur when RETURNing when a sub/function had not been called.

Undefined Routine, which indicates a call or return to non-existent code. This error will occur if you
RETURN when there has not been a GOSUB, the equivalent of a return stack underflow. This also may
occur when interrupts are used with firmware prior to version 7.30

The number reported (in hex) is the program address where the illegal access was detected. Refer to the
memory maps for more information, generally user code starts at &H3000.

Page 157

FUNCTIONs and SUBroutines

Sub Programs
 FUNCTION
 SUB
 ENDFUNCTION
 ENDSUB

Page 158

BYREF

Syntax

FUNCTION name (parameter list) [AS INTEGER | AS STRING | AS SINGLE]
 parameter list = parameter [, parameter list]
 parameter = [BYVAL] paramname [AS INTEGER]
 | [BYVAL] paramname AS SINGLE
 | [BYVAL] paramname(size) AS STRING
 | BYREF paramname AS STRING
 | BYREF paramname() AS STRING
 | [BYREF] paramname() [AS INTEGER]
 | [BYREF] paramname() AS SINGLE

Description

Used as a modifier in parameter declarations for FUNCTIONs or SUBs.

BYREF passes a pointer to the parameter to the FUNCTION or SUB. This allows a function to read AND
write the original source parameter.

An advantage in BYREF use with STRINGs, is that extra space is not required and the STRING does not
have to be copied for the FUNCTION or SUB procedure. Constant strings may be passed BYREF, but
any code that attempts to modify a constant string will cause a Data Abort.

BYVAL is assumed if nothing specified for single variables or STRINGs

Arrays of INTEGERs or SINGLEs can be passed, but are always passed BYREF, so the BYREF modifier
is optional.

Example

function toupper(a(100) as string) as string
 dim i as integer

 for i=0 to 100
 if a(i)=0 then exit
 if a(i) <= "z" and a(i) >= "a" then a(i) = a(i) - &H20
 next i
 return a
end function

main:

print toupper("asdf") ' will print ASDF

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 FUNCTION
 SUB

Page 159

BYVAL

Syntax

FUNCTION name (parameter list) [AS INTEGER | STRING | SINGLE]
 parameter list = parameter [, parameter list]
 parameter = [BYVAL] paramname [AS INTEGER]
 | [BYVAL] paramname AS SINGLE
 | [BYVAL] paramname(size) AS STRING

Description

Used as a modifier in parameter declarations for FUNCTIONs or SUBs.

When BYVAL is used a copy of the parameter will be used in the FUNCTION or SUB. And the
FUNCTION or SUB procedure can change the copy of the parameter, BUT not the original. BYVAL is the
default declaration and is assumed if the BYVAL or BYREF keyword are not used, except for arrays.

Example

function toupper(a(100) as string) as string
 dim i as integer

 for i=0 to 100
 if a(i)=0 then exit
 if a(i) <= "z" and a(i) >= "a" then a(i) = a(i) - &H20
 next i
 return a
end function

main:

print toupper("asdf") ' will print ASDF

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 FUNCTION
 SUB

Page 160

PARAMARRAY

Syntax

SUB | FUNCTION name (PARAMARRAY paramname)

Description

Used to declare a variable number of parameters in FUNCTIONs or SUBs.

When used a variable number of INTEGER parameters can be passed BYVAL to a FUNCTION or SUB
and accessed as elements of an array named paramname.

1 to 15 parameters may be passed. and the number of parameters - 1 is passed in paramname(15).

Example

FUNCTION sumof (PARAMARRAY z)
 DIM i,sum
 sum = 0
 FOR i=0 to z(15)
 sum += z(i)
 NEXT
 return sum
ENDFUNCTION

main:

print sumof(1,2,3) ' prints 6
print sumof(5,6,7,8,9,10) ' prints 45

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 FUNCTION
 SUB

Page 161

FUNCTION name (optional parameters)

Syntax

FUNCTION name [AS INTEGER | STRING | SINGLE] ' a FUNCTION without parameters

 or

FUNCTION name (parameter list) [AS INTEGER | STRING | SINGLE]
 parameter list = parameter [, parameter list]
 | PARAMARRAY paramarray
 parameter = [BYVAL] paramname [AS INTEGER]
 | [BYVAL] paramname AS SINGLE
 | [BYVAL] paramname(size) AS STRING
 | BYREF paramname AS STRING
 | BYREF paramname [AS INTEGER]
 | BYREF paramname AS SINGLE

Description

FUNCTIONs are an extension of SUB that will return a value. If no type for the FUNCTION is specified,
then INTEGER is assumed.

The FUNCTION .. ENDFUNCTION construct allows for a second scope of variables. Scope meaning the
region in which code can see a set of labels. ARMbasic has a global scope and a local scope for any
variable declared with DIM inside an FUNCTION. Local scope variables will be only accessible from within
that FUNCTION procedure (the local scope).

Simple parameters are assumed to be called BYVAL if not specified. In BYVAL calls, a copy of the
parameter is passed to the FUNCTION procedure. Integer or string parameters may be called BYREF
which means a pointer to the integer/string is passed, and changes to that integer/string can be made by
code inside the FUNCTION procedure. STRINGs may be passed either BYVAL or BYREF, but arrays
must be passed BYREF.

Code labels for goto/gosub declared within the SUB procedure are also in the local scope. Call to global
labels are allowed within a FUNCTION ... END FUNCTION , but that global label must be defined
BEFORE the FUNCTION ... END FUNCTION .

A FUNCTION should end with a RETURN expression, as FUNCTIONs return a value, if that is not needed
use a SUB.. A FUNCTION may also be called with a GOSUB, but the returned value is ignored.

FUNCTION without any parameters can be called with or without (), an empty parameter list.

Recursive calls with parameters or local variables are not supported. And ENDFUNCTION or END
FUNCTION syntax are allowed.

Program structure:

FUNCTIONs should be arranged ahead of the MAIN: body of code. In many cases they will be part of
#include files at the beginning of the user ARMbasic code. If FUNCTIONs are located at the start of a
program a MAIN: must be used.

FUNCTIONs can access global variables that have been declared before the FUNCTION, this declaration
can either be implicit or use a DIM.

FUNCTIONs must be defined before they are called.

Example

Page 162

function toupper(a(100) as string) as string
 dim i as integer

 for i=0 to 100
 if a(i)=0 then exit
 if a(i) <= "z" and a(i) >= "a" then a(i) = a(i) - &H20
 next i
 return a
end function

main:

print toupper("asdf") ' will print ASDF

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 DIM
 PARAMARRAY
 GOSUB
 ENDSUB
 MAIN:

Page 163

SUB name (optional parameters)

Syntax

SUB name ' a SUB without parameters

 or

SUB name (parameter list)
 parameter list = parameter [, parameter list]
 | PARAMARRAY paramarray
 parameter = [BYVAL] paramname [AS INTEGER]
 | [BYVAL] paramname(size) AS STRING
 | BYREF paramname AS STRING
 | BYREF paramname [AS INTEGER]

Description

GOSUB goes to a label. , but can also go to a defined SUB procedure.

The SUB.. ENDSUB construct allows for a second scope of variables. Scope meaning the region in
which code can see a set of labels. ARMbasic has a global scope and a local scope for any variable
declared with DIM inside an SUB. Local scope variables will be only accessible from within that SUB
procedure (the local scope).

Simple parameters are assumed to be called BYVAL if not specified. In BYVAL calls, a copy of the
parameter is passed to the SUB procedure. Integer or string parameters may be called BYREF which
means a pointer to the integer/string is passed, and changes to that integer/string can be made by code
inside the SUB procedure. STRINGs may be passed either BYVAL or BYREF, but arrays must be
passed BYREF.

Code labels for goto/gosub declared within the SUB procedure are also in the local scope. Call to global
labels are allowed within a SUB .. ENDSUB, but that global label must be defined BEFORE the SUB ...
ENDSUB.

SUB without any parameters can be called with or without (), an empty parameter list

Recursive calls with parameters or local variables are not supported. And ENDSUB or END SUB syntax
are allowed.

Program structure:

SUB procedures should be arranged ahead of the MAIN: body of code. In many cases they will be part of
#include files at the beginning of the user ARMbasic code. If SUBs are located at the start of a program a
MAIN: must be used.

SUB procedures can access global variables that have been declared before the SUB, this declaration
can either be implicit or use a DIM.

An implied RETURN is compiled at the ENDSUB, but code may also return to the caller with RETURN

SUBs must be defined before they are called.

Example

SUB sayHello
 DIM I as INTEGER ' this variable is local to the sayHello SUB procedure

Page 164

 FOR I=1 to 3
 PRINT "Hello"
 NEXT I

ENDSUB
 '...

MAIN:
 '...
I = 55
PRINT I ' will display 55

GOSUB sayHello

PRINT I ' will still display 55, as this is the global I, different from sayHello local I
 '...

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 DIM
 PARAMARRAY
 GOSUB
 ENDSUB
 MAIN:

Page 165

ENDFUNCTION | END FUNCTION

Syntax

ENDFUNCTION

ENDFUNCTION or END FUNCTION syntax are allowed

Description

ENDFUNCTION terminates a FUNCTION procedure

FUNCTIONs must be defined before they are called.

Example

function toupper(a(100) as string) as string
 dim i as integer
 dim l as integer
 l = len(a)
 for i=0 to l
 if a(i) <= "z" and a(i) >= "a" then a(i) = a(i) - &H20
 next i
 return a
end function

main:

print toupper("asdf") ' will print ASDF

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 DIM
 GOSUB
 SUB
 MAIN:

Page 166

ENDSUB | END SUB

Syntax

ENDSUB

ENDSUB or END SUB syntax are allowed

Description

ENDSUB terminates a SUB procedure

SUBs must be defined before they are called.

Example

SUB sayHello
 DIM I as INTEGER ' this variable is local to the sayHello SUB procedure

 FOR I=1 to 3
 PRINT "Hello"
 NEXT I

ENDSUB
 '...

MAIN:
 '...
I = 55
PRINT I ' will display 55

GOSUB sayHello

PRINT I ' will still display 55, as this is the global I, different from sayHello local I

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 DIM
 GOSUB
 SUB
 MAIN:

Page 167

Operators List

Operator List
 & (String concatenation)
 * (Multiplication)
 + (Addition)
 + (String concatenation)
 - (Negation)
 - (Subtraction)
 / (Division)
 < (Less than)
 <= (Less than or equal)
 <> (Inequality)
 = (Equality)
 > (Greater than)
 >= (Greater than or equal)
 ABS
 ADDRESSOF
 AND (Conjunction)
 IF(ternary)
 MOD (Integer modulo)
 NOT (Bit-wise complement)
 OR (Disjunction, Inclusive Or)
 << (Shift-left)
 >> (Shift-right)
 XOR (Exclusive Or)

Page 168

& (String concatenation)

Syntax

string1 & string 2
Description

The concatenation returns a string made of sticking both variables together. If some of the variables are
not strings, the STR function is called automatically to convert the variable to a string.

Multiple concatenations per line are supported, and the strings can include string functions such as
LEFT, RIGHT, HEX and STR. Also if a constant or integer is used it will be automatically converted to a
string, as if it had been enclosed in a STR().

Example

DIM A(20) as STRING
DIM C(20) as STRING
A ="The result is: "
B=1243
C=A & B
PRINT C
SLEEP

The output would look like:

The result is: 1243

Differences from other BASICs

 same as Visual Basic functions
 no equivalent in PBASIC

See also

 + String Concatenation
 String Functions

Page 169

* (Multiplication)

Syntax

argument1 * argument2
Description

The multiplication operator is used to multiply two numbers, and is the inverse of division, /. The
arguments argument1 and argument2 can be any valid numerical expression.

Example

n = 4 * 5
PRINT n
SLEEP

The output would look like:

20

Differences from other BASICs

 None
See also

 / (Division)
 + (Addition)
 Mathematical Functions

Page 170

+ (Addition)

Syntax

argument1 + argument2
Description

The addition operator is used to find the sum of two numbers. Addition, +, is the inverse of subtraction, -.
The arguments argument1 and argument2 can be any valid numerical expression.

Example

n = 454 + 546
PRINT n
SLEEP

The output would look like:

1000

Differences from other BASICs

 None
See also

 - (Subtraction)
 Mathematical Functions

Page 171

+ (String concatenation)

Syntax

string1 + string2
Description

The concatenation operator takes two string variables and returns a string made of sticking both strings
together.

Multiple concatenations per line are supported, and the strings can include string functions such as
LEFT, RIGHT, HEX and STR. Also if a constant or integer is used it will be automatically converted to a
string, as if it had been enclosed in a STR().

Example

DIM A(20)
DIM B(20)
DIM C(30)

A="Hello,"
B=" World!"
C=A +B
PRINT C
SLEEP

The output would look like:

Hello, World!

Differences from other BASICs

 PBASIC does not have string function support
 Similar to Visual BASIC

See also

 & String Concatenation
 String Functions

Page 172

- (Negation)

Syntax

- number

Description

The negation operator is used to give the negative value of number. number can be any valid numerical
expression.

Example

PRINT -5
n = 6543256
n = - n
PRINT n
SLEEP

The output would look like:

-5
-6543256

Differences from other BASICs

 None
See also

 Mathematical Functions

Page 173

- (Subtraction)

Syntax

argument1 - argument2

Description

The subtraction operator is used to find the difference between two numbers. Subtraction, -, is the inverse
of addition, +. The arguments argument1 and argument2 can be any valid numerical expression.

Example

n = 4 - 5
PRINT n
SLEEP

The output would look like:

-1

Differences from other BASICs

 None
See also

 + (Addition)
 Mathematical Functions

Page 174

> (Greater than)

Syntax

expressionLEFT > expressionRT
Description

The > (Greater-than) Operator evaluates two expressions, compares them and returns the resulting
condition. The condition is false (0) if the left-hand side expression is less than or equal to the right-hand
side expression, or true (1) if it is greater than the right-hand side expression.

Example

The <= (Less-than Or Equal) Operator is complement to the > (Greater-than) Operator, and is
functionally identical when combined with the NOT (Bit-wise Complement) Operator:

 IF(420 > 69) THEN PRINT "(420 > 69) is true."
 IF NOT(420 <= 69) THEN PRINT "not(420 <= 69) is true."

Differences from other BASICs

 none
See also

 <
 <=
 <>
 >
 >=
 Mathematical Functions

Page 175

/ (Division)

Syntax

argument1 / argument2
Description

The division operator is used to divide (or to find the ratio of) two numbers and return an integer or floating
point result. Division is the inverse of multiplication, *. The arguments argument1 and argument2 can be
any valid numerical expression.

Example

DIM x AS SINGLE

x=123.456
PRINT n / 5
n = 600000 / 23
PRINT n
PRINT x/n

The output would look like:

0
26086
4.732654E-02

Differences from other BASICs

 None with PBASIC
 Visual BASIC returns a floating point result

See also

 * (Multiplication)
 Mathematical Functions

Page 176

< (Less than)

Syntax

expressionLEFT < expressionRT
Description

The < (Less-than) Operator evaluates two expressions, compares them and returns the resulting
condition. The condition is false (0) if the left-hand side expression is greater than or equal to the
right-hand side expression, or true (1) if it is less than the right-hand side expression.

Example

The >= (Greater-than Or Equal) Operator is complement to the < (Less-than) Operator, and is
functionally identical when combined with the NOT (Bit-wise Complement) Operator:

 IF(69 < 420) THEN PRINT "(69 < 420) is true."
 IF NOT(69 >= 420) THEN PRINT "not(69 >= 420) is true."

Differences from other BASICs

 none
See also

 <
 <=
 <>
 >
 >=
 Mathematical Functions

Page 177

<= (Less than or equal)

Syntax

expressionLEFT <= expressionRT
Description

The <= (Less-than) or Equal Operator evaluates two expressions, compares them and returns the
resulting condition. The condition is false (0) if the left-hand side expression is greater than the right-hand
side expression, or true (1) if it is less than or equal to the right-hand side expression.

Example

The > (Greater-than) Operator is complement to the <= (Less-than or Equal) Operator, and is
functionally identical when combined with the NOT (Bit-wise Complement) Operator:

 IF(69 <= 420) THEN PRINT "(69 <= 420) is true."
 IF NOT(60 > 420) THEN PRINT "not(420 > 69) is true."

Differences from other BASICs

 the =< version of Visual BASIC is also supported
 none from PBASIC

See also

 <
 <=
 <>
 >
 >=
 Mathematical Functions

Page 178

<> (Inequality)

Syntax

expressionLEFT <> expressionRT
Description

The <> (Inequality) Operator evaluates two expressions, compares them for inequality and returns the
resulting condition. The condition is false (0) if the left-hand side expression and the right-hand side
expression are equal, or true (1) if they are unequal.

Example

In a number guessing game, the <> (Inequality Operator) can be used to check the player's guess with
the secret number:

guess = 0
 ' ... '' <- get number from user and store in guess
 IF(guess <> secret_number) THEN PRINT "Sorry, you guessed wrong. Try again."
 ' ...

The = (Equality) Operator is complement to the <> (Inequality) Operator, and is functionally identical
when combined with the NOT (Bit-wise Complement) Operator:

 IF(420 <> 69) THEN PRINT "(420 <> 69) is true."
 IF NOT(420 = 69) THEN PRINT "not(420 = 69) is true."

Differences from other BASICs

 none
See also

 <
 <=
 <>
 >
 >=
 Mathematical Functions

Page 179

= (Equality)

Syntax

expressionLEFT = expressionRT
Description

The = (Equality) Operator evaluates two expressions, compares them for equality and returns the
resulting condition. The condition is false (0) if the left-hand side expression and the right-hand side
expression are unequal, or true (1) if they are equal.

Example

Equality comparisons should not be confused with Assignments, both of which also use the "=" symbol:

 i = 420 '' assignment: assign the value of i as 420

 IF(i = 69) THEN '' equation: compare the equality of the value of i and 69
 PRINT "serious error: i should equal 420"
 END
 ENDIF

The <> (Inequality) Operator is complement to the = (Equality) Operator, and is functionally identical
when combined with the NOT (Bit-wise Complement) Operator:

 IF(420 = 420) THEN PRINT "(420 = 420) is true."
 IF NOT(69 <> 69) THEN PRINT "not(69 <> 69) is true."

Differences from other BASICs

 none
See also

 <
 <=
 <>
 >
 >=
 Mathematical Functions

Page 180

>= (Greater than or equal)

Syntax

lexpressionLEFT >= expressionRT
Description

The >= (Greater-than) or Equal Operator evaluates two expressions, compares them and returns the
resulting condition. The condition is false (0) if the left-hand side expression is less than the right-hand
side expression, or true (1) if it is greater than or equal to the right-hand side expression.

Example

The < (Less-than) Operator is complement to the >= (Greater-than or Equal) Operator, and is
functionally identical when combined with the NOT (Bit-wise Complement) Operator:

 IF(420 >= 69) THEN PRINT "(420 >= 69) is true."
 IF NOT(420 < 69) THEN PRINT "not(420 < 69) is true."

Differences from other BASICs

 the => version of Visual BASIC is also supported
 none from PBASIC

See also

 <
 <=
 <>
 >
 >=
 Mathematical Functions

Page 181

AND

Syntax

number1 AND number2
Description

In BASIC all logic operators are context sensitive. The default is to perform a bitwise operation on 32 bit
numbers. So that

number1 = &H55555555
number2 = &H33333333

print HEX(number1 AND number2)

Result is 11111111. The function HEX (param) returns a string representing the hex value param.

But is the context includes a comparison then the AND operation becomes a logical operation

IF number1 > 5 AND number2 > 5 THEN statement1

So if the 2 conditions are TRUE then statement1 is executed.

If you are going to mix logical and bitwise operators then use () in the expression to evaluate the bitwise
operations first, see the example below.

Example

x=&H55
y=&H33
if (x and y)=&H11 and x>y then print "OK"

' This will print OK

Differences from other BASICs

 none from Visual BASIC
 PBASIC AND is always logical, and & is bit-wise

See also

 OR
 XOR
 NOT

Page 182

NOT

Syntax

NOT expression
Description

Not, at its most primitive level, is a operation, a logic function that takes one bit and returns a inverted bit.
This function returns true if the bit is false, and false if the bit is true. This also holds true for conditional
expressions in ARMbasic . When using "Not" encased in an If block, While loop, or Do loop, the output
will behave quite literally:

IF NOT condition1 THEN expression1

Is translated as:

IF condition1 = 0 THEN perform expression1

When given a expression, number, or variable that return a number that is more than a single bit, Not is
performed bit-wise. A bit-wise operation performs a logic operation for every bit.
The Boolean math expression below describes this:

00001111 NOT
-------- equals
11110000

Notice how in the resulting number of the operation, reflects an NOT operation performed on each bit of
the expression.

When used with conditions NOT becomes a logical operation.

if NOT x>5 then print "x is less than or equal to 5"
'-------- equivalent to
if x <= 5 then print "x is less than or equal to 5"

In the above example if x is 7 and you PRINT NOT x>5 would print 0, and print 1 if x is 3.

If using NOT in a complex statement, it has a very low precedence and it is best to force the operation of
the NOT by using parenthesis.

Example

' Using the NOT operator on a numeric value

numeric_value = 15 '00001111

'Result = -16 = 111111111111111111111111111110000
PRINT NOT numeric_value
END

Page 183

' Using the NOT operator on conditional expressions

n1 = 15
n2 = 25

IF NOT n1 = 10 THEN PRINT "N1 is not equal to 10"
IF NOT n2 = 25 THEN PRINT "N2 is not equal to 25"
IF (NOT n2 = 25) or n2=10 THEN PRINT "N2 is not equal to 25 or is equal to 10"
END

' This will output "Numeric_Value1 is not equal to 10" because
' the first IF statement is false.
' It will not output the result of the second IF statement because the
' condition is true.

Differences from other BASICs

 None
See also

 AND
 OR
 XOR

Page 184

OR

Syntax

number OR number
Description

In BASIC all logic operators are context sensitive. The default is to perform a bitwise operation on 32 bit
numbers. So that

number1 = &H55555555
number2 = &H33333333

print HEX(number1 OR number2)

Result is 77777777. The function HEX (param) returns a string representing the hex value param.

But is the context includes a comparison then the AND operation becomes a logical operation

IFnumber1 > 5 OR number2 > 5 THEN statement1

So if either of the 2 conditions are TRUE then statement1 is executed.

If you are going to mix logical and bitwise operators then use () in the expression to evaluate the bitwise
operations first, see the example below.

Example

x=&H55
y=&H33
if (x or y)=&H77 or x<y then print "OK"

' This will print OK as X OR Y is &H77

Differences from PBASIC

 PBASIC OR is always logical, and | is bit wise
See also

 AND
 XOR
 NOT

Page 185

<<

Syntax

number << places
Description

<< shifts all bits in the argument number INTEGER to the left by argument places. This has the effect of
multiplying the argument number by two for each shift given in the argument places. Both arguments,
numbers and places are integers. This is easiest to see in a binary number. For example %0101 << 1
return the binary number %01010. In base 10 numbers this looks like 5 << 1 and returns 10.

Shift operations can not be used on SINGLE variables

Example

FOR i = 1 TO 10
 PRINT 1 << i
NEXT i
SLEEP

The output would look like:

2
4
8
16
32
64
128
256
512
1024

Differences from other BASICs

 none
See also

 >>

Page 186

>>

Syntax

number >> places
Description

>> shifts all bits in the argument number INTEGER to the right by argument places. This has the effect of
dividing the argument number by two for each shift given in the argument places. Both arguments,
numbers and places are integers. This is easiest to see in a binary number. For example %0101 >> 1
return the binary number %010. In base 10 numbers this looks like 5 >> 1 and returns 2.

If the number variable is signed, the sign bit is recopied into its place after the shift.

Shift operations can not be used on SINGLE variables

Example

FOR i = 1 TO 10
 PRINT 1000 >> i
NEXT i
SLEEP

The output would look like:

500
250
125
62
31
15
7
3
1
0

Differences from other BASICs

 none
See also

 <<

Page 187

XOR

Syntax

number XOR number
Description

XOR, at its most primitive level, is a Boolean operation, a logic function that takes in two bits and outputs
a resulting bit. If given two bits, this function returns true if ONLY one of the bits are true, and false for any
other combination. The truth table below demonstrates all combinations of a Boolean XOR operation:

Bit1 Bit2 Result
 0 0 0
 1 0 1
 0 1 1
 1 1 0

In ARMbasic, XOR is done as a bit-wise operation, unless it is part of a logical expression. Logical
expressions are those that compare values. And when part of a logical expression the XOR is true if
either logical expression are true, but not if both are true.

bit wise 00001111 XOR 00011110 is equal to 00010001

Notice how in the resulting number of the operation, reflects an XOR operation performed on each bit of
the top operand, with each corresponding bit of the bottom operand.

Example

x=&H55
y=&H33
if (x xor y)=&H66 or x<y then print "OK"

' This will print OK as X XOR Y is &H66

Differences from PBASIC

 PBASIC XOR is always logical, and ^ is bit wise
See also

 AND
 OR
 NOT

Page 188

Compound Operators

Description

 Version 8.10 added compound operators. These are a special assignment statement that applies the
operator to the lvalue that will be assigned.

 lvalue+= 1

 The statement above will increment the variable, in general a compound operator makes the 2
following statements equivalent.

 lvalue op= expr< /EM>

 lvalue = lvalue op expr

Compound operators include * + - / AND OR XOR >> <<

Operator precedence does NOT change with a compound operator so that

 x += a << b ' BAD, as the addition will take precedence over the shift

should not be used, but you should use

 x += (a << b)

Example

i += 1 ' increment i< /FONT>

a AND= &Hffff0fff ' mask bits 12 to 15 of a

b <<= 5 ' shift b left by 5 bits

c OR= &Hf0 ' set bits 4-7 of c

h *= 10 ' multiply h by 10

See also

 Operator List

Page 189

Operator Precedence

Description

 When several operations occur in a single expression, each operation is evaluated and resolved in a
predetermined order. This called the order of operation or operator precedence. There are three main
categories of operators; arithmetic, comparison, and logical. If an expression contains operators from
more than one category, arithmetic operators are evaluated first, comparison operators next, and finally
logical operators are evaluated last. If operators have equal precedence, they then are evaluated in the
order in which they appear in the expression from left to right. Comparison operators all have equal
precedence.

 The following table gives the operator precedence for each operator in each category. Operators lower
on the list have a lower operator precedence. Operators on the right have lower precedence than ALL
operators in the column to the left. Arithmetic operators are evaluated before comparison operations, and
logical operators are last.

 Parentheses can be used to override operator precedence. Operations within parentheses are
performed before other operation. However, within the parentheses operator precedence is used.

Arithmetic Comparison Bitwise/Logical
- (Negation) = <> < > <= >= AND
*, / (Multiplication and division) OR XOR
MOD (Modulus Operator) NOT
+, - (Addition and subtraction)
<<, >> (Shift Bit Left and Shift Bit Right)

See also

 Operator List

Page 190

Ternary Operation

Syntax

IF(expression, true_expr, false_expr)
Description

Ternary operations allow a shorthand for doing conditional calculations

IF ch >= "a" THEN ch = ch AND &H5F

can be written as:

ch = IF(ch > = "a", ch AND &H5F, ch) ' this is a crude upshift

Differences from other BASICs

 No equivalent in PBASIC
 None from VB

See also

 AND
 OR
 XOR

Page 191

Type Conversions

Description

 The ARMbasic compiler handles many conversions between INTEGER, SINGLE and STRING
variables.

input INTEGER SINGLE STRING

INTEGER = yes no
SINGLE = yes no
STRING = yes no*
FUNCTION (INTEGER param) yes no
FUNCTION (SINGLE param) yes no
FUNCTION (STRING param) no no
RETURN INTEGER-FUNCTION yes no
RETURN SINGLE-FUNCTION yes no
RETURN STRING-FUNCTION no no
printf no no no

Simple statements

lvalue = expression

Expression will be evaluated with the type of lvalue and conversions will be made to lvalue's type as
allowed above

Complex Statements

IF (expressionA) then RETURN expressionB else RETURN expressionC

ExpressionA is evaluated depending on the first operand found (scanning from left to right)

ExpressionB and ExpressionC will be converted to the type of the FUNCTION as allowed in the table.

IF (expressionA) then lvalue = expressionB

ExpressionA is evaluated depending on the first operand found (scanning from left to right)

ExpressionB will be evaluated with the type of lvalue

Parameter Passing

FUNCTION someFunction (paramA AS typeA, paramB AS typeB, paramC AS typeC) AS
funtionType

 ...

Page 192

lvalue = someFunction (ExpressionA, ExpressionB, ExpressionC)

ExpressionA, ExpressionB and ExpressionC will be evaluated depending on the type of the parameter
as declared.

If the type of someFunction is different than the type of lvalue it will be converted as allowed.

printf

printf is a special built in SUB, there is no type checking or conversion between parameters and the
format-string, so if you try to use a %d to print a SINGLE type variable, you will not get the expected
results.

INTEGER/STRING

INTEGERs are converted to string type and concatenated with the rest of the string expression.

To convert a STRING to an INTEGER use the built-in VAL function.

Currently you must use SPRINTF to convert a SINGLE to a STRING

There is no built-in conversion from STRING to SINGLE.

See also

 Operator List

Page 193

AddressOf

Syntax

 ... = ADDRESSOF(sub/function) ' get the starting address of the sub/function

 or

 ... = ADDRESSOF (variable/string)

Description

The address of a variable or function can be determined with the ADDRESSOF operator.

Earlier versions of the compiler did not use () around the object, and that syntax is still allowed though
not recommended.

The variable, string, sub or function must be declared prior to the use of ADDRESSOF operation.

Example

xx = 0

interrupt sub doit
 ' insert code to clear the interrupt
 xx = xx+1
end sub

'... other code including MAIN go here

VICVectAddr3 = ADDRESSOF (doit) +1 ' setup the 3rd interrupt to execute doit (+1 for Thumb
code)

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also



Page 194

AddressOf

Syntax

 ... = ADDRESSOF(sub/function) ' get the starting address of the sub/function

 or

 ... = ADDRESSOF (variable/string)

Description

The address of a variable or function can be determined with the ADDRESSOF operator.

Earlier versions of the compiler did not use () around the object, and that syntax is still allowed though
not recommended.

The variable, string, sub or function must be declared prior to the use of ADDRESSOF operation.

Example

xx = 0

interrupt sub doit
 ' insert code to clear the interrupt
 xx = xx+1
end sub

'... other code including MAIN go here

VICVectAddr3 = ADDRESSOF (doit) +1 ' setup the 3rd interrupt to execute doit (+1 for Thumb
code)

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also



Page 195

Constants

Description

 Constants are numbers which cannot be changed after they are defined. For example, 5 will always
mean the same number.

 In ARMbasic, variable names can be told to be constants by defining them with the CONST
command.

 Such constants are then available globally, meaning that once defined, you can use the word to refer to
a constant anywhere in your program.

 After being defined with the CONST command, constants cannot be altered. If code tries to alter a
constant, an error message will result upon code compilation.

 Only the first 32 characters of a constant name are used, beyond that they are truncated.

 By default, constants are defined by decimal numbers. Versions of the compiler after 7.43 also support
VB style hex constants defined by &H, such as &H1000 = 4096.

 PBASIC style hex and binary constants may also be used. A PBASIC style hex constant will begin
with $, such as $3FAB. PBASIC style Binary constants begin with %, such as %010101111. While
decimal constants can be signed, hex and binary constants are always unsigned.

 IEEE 754 floating point support has been added. Constants for single numbers can be defined as an
option - sign followed by decimal digits for the integer portion, followed by . then the fractional portion.
Such as 1234.568 55. 0.0000000003456

Example

CONST PI = 3.14159265

CONST FirstNumber = 1
CONST SecondNumber = - 2

PRINT FirstNumber, SecondNumber 'This will print 1 -2

See also

 CONST

Page 196

Variables

Syntax

symbolname = expression ' automatic declaration for INTEGER

 or

DIM symbolname AS INTEGER

DIM floatingpoint AS SINGLE

Description

 Variables are values which can be manipulated. They are referenced using names composed of letters,
numbers, and character "_". These reference names cannot contain most other symbols because such
symbols are part of the ARMbasic programming language. They also cannot contain spaces.

 32-bit signed whole-number data type. Can hold values from -2147483648 to 2147483647.

 Single variables can hold positive and negative numbers 0.0, 1.0000E-39 to 1.0000E+38. Within this
range there are 7 significant digits. Outside this range numbers will print as NaN -- not a number or Inf
for infinity .

 Variables are declared automatically on first use. A DIM statement is not required, but can be used.
Once a INTEWGER variable is declared using a DIM, then all following variables must be declared
that way .

 Variable names must start with a letter or _ character, but then can contain letters, numbers or the _
character. The name must also contain at least one letter. Only the first 32 characters of a variable name
are used, beyond that they are truncated. Also names are not case sensitive.

Example

FirstNumber = 1
SecondNumber = -2
ThirdNumber = &H20

PRINT FirstNumber, SecondNumber, ThirdNumber 'This will print 1 -2 32

DIM FirstNumber AS INTEGER
DIM SecondNumber AS INTEGER
DIM ThirdNumber AS INTEGER

FirstNumber = 1
SecondNumber = -2
ThirdNumber = &H20

PRINT FirstNumber, SecondNumber, ThirdNumber 'This will print 1 -2 32

Differences from other BASICs

 similar to Visual BASIC
 different syntax in PBASIC

Page 197

See also

DIM

Page 198

Arrays

Description

 Arrays are Variables which contain more than one value. The value decided upon is chosen using an
index which is an integer value between 0 and the number of elements in the array. In ARMbasic , any
array must be declared before it's first use using the DIM command.

 The best way to conceptualize an array is look at it like a spreadsheet. For example, if you had an
array called myArray which contained elements (0 to 10), and was filled with random numbers, you could
look at it like this:

Index Data

0 4

1 5

2 2

3 6

4 5

5 9

6 1

7 0

8 4

9 5

10 7

 Keep in mind that the numbers in the Data column are completely arbitrary in our example. When you
create an array in ARMbasic using the DIM command, the elements are all set to 0.
 If you were to look at myArray(1), you'd find it's equal to 5. If you were to look at myArray(5),you'd find
it equal to 9. In ARMbasic , you can for the most part treat arrays with indexes the same as you would
all Variables.

 Arrays can hold BYTE, INTEGER or SINGLE values. Index values are always computed as integers,

Page 199

so that any SINGLE variable used inside the (index expression) is truncated to an INTEGER.

Example

DIM Numbers(10)
DIM OtherNumbers(10)

Numbers(1) = 1
Numbers(2) = 2
OtherNumbers(1) = 3
OtherNumbers(2) = 4

GOSUB PrintArray

FOR a = 1 TO 10
 PRINT Numbers(a)
NEXT a

PRINT OtherNumbers(1)
PRINT OtherNumbers(2)
PRINT OtherNumbers(3)
PRINT OtherNumbers(4)
PRINT OtherNumbers(5)
PRINT OtherNumbers(6)
PRINT OtherNumbers(7)
PRINT OtherNumbers(8)
PRINT OtherNumbers(9)
PRINT OtherNumbers(10)

PrintArray:
 FOR i = 1 TO 10
 PRINT otherNumbers(i)
 NEXT i
RETURN

See also

 Strings
 DIM

Page 200

Strings

Syntax

DIM symbolname$ (maxlength) ' kept for backward compatibility

 or

DIM symbolname (maxlength) AS STRING

 or

DIM symbolname (maxlength) AS BYTE

Description

A STRING is a special array of BYTE terminated by a byte of 0, and is limited to 256 characters. String
operations must be limited to the first 256 characters and there is no runtime check.

Despite the use of the maxlength , an implicit &H0 is added to the end of the STRING, to allow for variable
length during program execution. For this reason a &H0 may not be used within a string.

Byte arrays can be used using an allocation as BYTE, and they may exceed 256 characters. They may
also contain embedded &H0 elements. But if they do, string operations can not be used. For instance a
byte array of &H0, &H1, &H2 can be built as-

 astr(0) = 0
 astr(1) = 1
 astr(2) = 2
 astr(3) = 3

But the following will NOT work-

 astr = chr(0) + chr(1) + chr(2) + chr(3) ' fails as the first 0 terminates this string operation

But it can be done as-

 astr = chr(1) + chr(1) + chr(2) + chr(3)
 astr(0) = 0 ' replace the first character with a $0

STRINGs are not checked for length at run time, so care must be taken to avoid filling it beyond the
declared DIM.

Individual characters within a string can be accessed like an array, such as astr(12) returns the character
in position 13, with the first element at offset 0.

Single character strings are a special case, and usually replaced by the byte constant representing that
character. So "A" can be used interchangeably with &H41 or 63.

Example

' Fixed-length declaration, but value varies during execution
DIM astr (20) as STRING
astr = "Hello"

astr = astr+chr(32)+ "World"

Page 201

PRINT astr ' = "Hello World"

Differences from other BASICs

 Similar to Visual BASIC strings. In VB strings can have implied length when declared, but
ARMbasic requires an explicit length when declared.

 PBASIC has Arrays of BYTEs but no specific strings
See also

 STR

Page 202

ARM Hardware Access

Description

 While ARMbasic provides access to many hardware functions through various keywords, there are
cases where the user may want to program the available control registers directly.

Example

DayOfWeek = * (&HE0024034) ' read the real time clock day of week register

* (&HE0024034) = DayOfWeek ' write the real time clock day of week register

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 CPU Register Details

Page 203

Converting Data Types

To/From Strings
 ASC implied
 CHR
 HEX
 STR
 VAL

 Other automatic conversions

Page 204

Expression Evaluation

Description

ARMbasic can evaluate an expression as either an integer, string or floating point. The type of evaluation
that is performed is determined by the first variable, constant or function in a statement when scanning
from left to right. It is simple scan of left to right and () are ignored for determining the type of evaluation
that will occur.

Example

DIM SINGLEtype as SINGLE

SINGLEtype = 1/2 ' results in 0.500000

INTEGERtype = 1/2 ' results in 0

functionCall (0.123 + INTEGERtype) ' passes a SINGLE type to functionCall

functionCall (123 + SINGLEtype) ' passes an INTEGER to functionCall

if 1 = SINGLEtype*2 then print "true" ' will not print true, as the expression is evaluated as
integers

if 1.0 = SINGLEtype*2 then print "true" ' will print true as 1.0 is a floating point constant and the
expression is evaluated as float

Page 205

CHR

Syntax

CHR(expression)
Description

CHR returns a single byte string containing the character represented by the ASCII code passed to it. For
example, CHR(97) returns "a".

Note:
There is no need for a complimentary function, as that type conversion is automatic, see sample code
below.

Example

PRINT "the character represented by the ASCII code of 97 is:"; CHR(97) ' will print a

DIM a(10) as STRING ' examples of automatic type conversion complimentary to CHR
a ="asdf"

PRINT a(0), chr(a(0)) ' will print 97 a
x = a(0)
PRINT x ' will print 97
if x = "a" then PRINT "it is a" ' will print it is a

Differences from other BASICs

 does not exist in PBASIC
 same function exists in Visual BASIC

See also

 STR
 HEX
 VAL

Page 206

HEX

Syntax

HEX (expression)

Description

This returns the hexadecimal string representation of the INTEGER expression . Hexadecimal values
contain 0-9, and A-F. The size of the result string depends on the integer type passed, it's not fixed.

HEX is not defined for use with SINGLE types

Example

DIM text(10) as String

text = HEX(4096)
PRINT "0x";text ' will display 0x1000

Differences from other BASICs

 same function as Visual BASIC
 similar to PBASIC format directive available in SHIFTIN, SERIN, DEBUGIN

See also

 CHR
 STR
 VAL

Page 207

I2F F2I -- implied function

Syntax

In ARMbasic this is an automatic type conversion between SINGLE and INTEGER

But if you want to do it explicitly, in your code add the following do-nothing #define

#define I2F(x) 0.0+x ' works because 0.0 is the first operand encountered and makes it floating point

#define F2I(y) 0+y ' works because the first operand is 0 an integer

Description

ARMbasic automatically converts INTEGER type variables to/from SINGLE type variables.

In the simplest case, this is done by assigning SINGLE type = INTEGER type or vice versa.

When statements are parsed by ARMbasic, the parser looks for the first variable or constant and will use
that elements type to determine whether to use floating point or integer calculations. Index parameters
are always treated as INTEGER.

So --

DIM SINGLEtype AS SINGLE

SINGLEtype = 1/2 ' results in 0.500000

INTEGERtype = 1/2 ' results in 0

functionCall (0.123 + INTEGERtype) ' passes a SINGLE type to functionCall

functionCall (123 + SINGLEtype) ' passes an INTEGER to functionCall

To access bit fields within a SINGLE, you must convert it to an INTEGER without the implied type
conversion. The easiest way to do that is

INTEGERtype = * (ADDRESSOF SINGLEtype) ' now you can do bit manipulations with AND, OR,
XOR, NOT on INTEGERtype.

Differences from other BASICs

 does not exist in PBASIC
 same function exists in Visual BASIC

See also

 ASCII table
 HEX
 VAL

Page 208

STR

Syntax

STR(expression)
Description

STR will convert an integer expression into a string.

For example, STR(3) will become "3", or STR(333) will become "333".

Incidentally, this is the opposite of the VAL function, which converts a string into a number.

STR is also used in certain routines of the Hardware Library to designate that a series of bytes should be
read or written to a string.

Also in the following case the STR function is implied and is not required.

bstring = 333 + " sent" ' will save the ASCI string "333 sent" into b$

The implied STR will work for simple expressions, but anything complex should use STR(), this would
include any function call, array element fetches.

For floating point numbers use SPRINTF.

Example

DIM bstring (10) AS STRING
a = 8421
bstring = STR(a)
PRINT a, b ' will display 8421 8421

Differences from other BASICs

 same function in Visual BASIC
 similar to DEC formatting function in PBASIC

See also

 VAL
 CHR
 HEX
 Hardware Library, Function List

Page 209

VAL

Syntax

VAL(string)
Description

VAL converts a string to a decimal number. For example, VAL("10") will return 10. The function parses
the string from the left and returns the longest number it can read, stopping at the first non-suitable
character it finds.

Incidentally, this function is the opposite of STR , which converts a number to a string.

string can contain negative numbers or hex numbers when preceded by a $.

VAL does only INTEGER interpretation

Example

DIM astring(20) as STRING
astring = "20xa211"
b = VAL(astring)
PRINT astring, b

20xa211 20

Differences from other BASICs

 similar to Visual BASIC -- VB ignores space and tab characters during the parsing and allows &H
or &O

 similar to formatting directives DEC, HEX in PBASIC
See also

 STR
 HEX
 CHR

Page 210

Additional Reserved Words

The Future
The ARMexpress is the first in a new generation of ARM-based controllers. The ARMbasic language has
provisions for some of the features for the next members in the family. For this reason a number of words are
reserved for future use.

In order to maintain compatibility with future ARMbasic instructions the following words have been reserved.

CODE

DATA

QUIT

QUITDUMP

QUITNOW

READONLY

WEB

WEBGET

Page 211

Obsolete Reserved Words

The Past

The ARMbasic language has replaced some older constructs with either other keywords or library calls to
make room for floating point.

In order to maintain compatibility with other ARMbasic instructions the following words have been reserved.

BAUD0

BAUD1

RXD0

RXD1

TXD0

TXD1

REV

RND

DATA

READ

RESTORE

Page 212

Runtime Library

Runtime Library

 Math Functions
 String Functions

Page 213

https://www.coridium.us/coridium/shop/boards/bd05-stamp

Byte and HalfWord Functions

Byte and HalfWord Functions
 RD_BYTE
 RD_HALF
 WR_BYTE
 WR_HALF

* WORD ACCESS

Page 214

RD_BYTE

Syntax

RD_BYTE(address)
Description

The value of the byte at address is returned. That value is unsigned, so 0 to 255 can be expected.

This is a compiler change and is a feature of compilers 9.36 and later.

Example

x = RD_BYTE(&H10000000) ' load the byte at &H10000000 into x

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 RD_HALF
 WR_BYTE
 WR_HALF
 * WORD ACCESS

Page 215

RD_HALF

Syntax

RD_HALF (address)
Description

The value of the halfword at address is returned. That value is unsigned, so 0 to 65535 can be expected.

This is a compiler change and is a feature of compilers 9.36 and later.

Some ARMs allow unaligned accesses, but others that causes a memory fault. The LPC17xx and
LPC4xxx allow un-aligned access.

Example

x = RD_HALF(&H10000000) ' load the 16 bit value at &H10000000 and &H10000001 into x

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 RD_BYTE
 WR_BYTE
 WR_HALF
 * WORD ACCESS

Page 216

WR_BYTE

Syntax

WR_BYTE(address, number)
Description

The value of the number is writen into the byte at address .

This is a compiler change and is a feature of compilers 9.36 and later.

Some ARMs allow unaligned accesses, but others that causes a memory fault. The LPC17xx and
LPC4xxx allow un-aligned access.

Example

WR_BYTE(&H10000000, x) ' load the 8 bit value of x into &H10000000

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 RD_BYTE
 RD_HALF
 WR_HALF
 * WORD ACCESS

Page 217

WR_HALF

Syntax

WR_HALF (address , number)
Description

The value of the number is writen into the 2 bytes at address .

This is a compiler change and is a feature of compilers 9.36 and later.

Some ARMs allow unaligned accesses, but others that causes a memory fault. The LPC17xx and
LPC4xxx allow un-aligned access.

Example

WR_HALF(&H10000000, x) ' load the 16 bit value of x into &H10000000 and &H10000001

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 RD_BYTE
 RD_HALF
 WR_BYTE
 * WORD ACCESS

Page 218

Mathematical Functions

Mathematical Functions
 ABS
 MOD

Page 219

ABS

Syntax

ABS (number)
Description

The absolute value of a number is its unsigned magnitude. For example, ABS(-1) and ABS(1) both return
1. The required number argument can be any valid numeric expression. If number is an uninitialized
variable, zero is returned.

WIth firmware 8.15 support for floating point has been added and is valid for SINGLE variables, in fact it's
the one case where floating point is faster than integer.

Example

PRINT ABS (-1)
PRINT ABS (42)
PRINT ABS (N)

N = -69

PRINT ABS (N)

The output would look like:

1
42
0
69

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC

See also

 OR
 XOR
 NOT

Page 220

MOD

Syntax

argument1 MOD argument2
Description

MOD is the modulus or "remainder" arithmetic operator. The result of MOD is the integer remainder of
argument1 divided by argument2.

Both arguments should be integers, MOD is not defined for floating point values.

Example

PRINT 47 MOD 7
PRINT 56 MOD 2
PRINT 5 MOD 3

The output would look like:

5
0
2

Differences from other BASICs

 none from Visual BASIC
 PBASIC uses //

See also

Page 221

File operations (SD card)

These functions are implemented in versions of BASIC for the DataLogger and Teensy3.0/3.1. Other
versions on Coridium boards are currently under development.

The current version limits the use to having only 1 file open at a time, and only operations in the root
directory. File names are limited of up to 8 characters period followed by up to 3 characters. Spaces are
NOT allowed in filenames.

File Functions
 FILEOPEN
 FILEREADDIR
 FILEREADBYTE
 FILEWRITEBYTE
 FILEEOF
 FILECLOSE

Data Logger

The LPC4330 based DataLogger has an SDcard socket and supports the File operations.

Connections for SuperPRO (unreleased alpha version)

Page 222



SD DI -- MOSI P0.18
 SD DO -- MISO P0.17
 SD SCK -- SCK P0.15
 SD CS -- SSEL P0.16

Connections for mBed

Connections for ArchPro

 The connections are made on the SPI connector



SD DI -- MOSI P0.18
 SD DO -- MISO P0.17
 SD SCK -- SCK P0.15
 SD CS -- SSEL P0.16

Connections for Teensy

Page 223

FILEOPEN

Syntax

FUNCTION FILEOPEN("filenameString", param)

Description

FILEOPEN is built into version 8.30 and later.

The filename is a string. File names are limited of up to 8 characters period followed by up to 3
characters. Spaces are NOT allowed in filenames

param is a single character "r" for read, "w" for write, and "a" for append, single characters are treated like
the integer value of the ASCII character.

The function returns 1 for a successful open.

In this version ONLY ONE file can be open at a time.

Error codes:

-1 FR_NOT_READY
-2 FR_NO_FILE
-3 FR_NO_PATH
-4 FR_INVALID_NAME
-6 FR_DENIED
-7 FR_EXIST
-8 FR_RW_ERROR
-11 FR_NO_FILESYSTEM
-12 FR_INVALID_OBJECT

Example

i = fileopen("logfile.txt", "w")

if i <> 1 then
 printf("OPEN FAILED %d, TRY AGAIN", i)
 i = fileopen("logfile.txt", "w") ' try again
endif

Differences from other BASICs

 no equivalent Visual BASIC
 no equivalent in PBASIC

See also

 FILEREADDIR
 FILEWRITEBYTE
 FILEREADBYTE
 FILEEOF
 FILECLOSE

Page 224

FILEREADDIR

Syntax

FUNCTION FILEREADDIR(filenumber) AS STRING

Description

FILEREADDIR is built into version 8.30 and later.

Reads the Nth entry in the directory file list.
Returns the file name or an empty string if there are no more files.

Example

 dim file_number as integer

 dim file_name(16) as string

 file_number = 0

 file_name = ""

 do

file_name = filereaddir(file_number)

if file_name <> ""

print "file "; file_number; " is "; file_name

endif

file_number += 1

 loop until file_name = ""

Page 225

Differences from other BASICs

 no equivalent Visual BASIC
 no equivalent in PBASIC

See also

 FILEOPEN
 FILEWRITEBYTE
 FILEREADBYTE
 FILEEOF
 FILECLOSE

Page 226

FILEREADBYTE

Syntax

FUNCTION FILEREADBYTE(reserved)

Description

FILEREADBYTE is built into version 8.30 and later.

This version returns the next byte in the file, the parameter reserved is not used. The byte value can be 0
to 255, a value of -1 is returned on error.

Example

 i = fileopen("logfile.txt", "r")

 j=0
 while(fileeof(0) = 0)
 j += 1
 i= filereadbyte(0)
 if i<0
 printf("filereadbyte() failed %d", i)
 goto READ_FAILED
 else
 print chr(i);
 endif
 loop

READ_FAILED:
 fileclose(0)
 print
 printf("Read %d bytes",j)

Differences from other BASICs

 no equivalent Visual BASIC
 no equivalent in PBASIC

See also

 FILEOPEN
 FILEWRITEBYTE
 FILEREADDIR
 FILEEOF
 FILECLOSE

Page 227

FILEWRITEBYTE

Syntax

FUNCTION FILEWRITEBYTE(character, reserved)

Description

FILEWRITEBYTE is built into version 8.30 and later.

Writes a character into the open file.

Returns 1 on success or error codes listed in FILEOPEN

Example

dim buffer(32) as string

printf("SD Card Example Program")

i = fileopen("logfile2.txt", "w")

if i=1
 buffer = "abcdefghijklmnoa" + chr(13)+chr(10)
 for j=0 to len(buffer)-1
 i = filewritebyte(buffer(j),0)
 if i < 0
 printf("filewritebyte() failed %d", i)
 goto WRITE_FAILED
 endif
 next j

WRITE_FAILED:
 fileclose(0)
 printf("Write %d bytes",j)
 endif

Differences from other BASICs

 no equivalent Visual BASIC
 no equivalent in PBASIC

See also

 FILEOPEN
 FILEREADDIR
 FILEREADBYTE
 FILEEOF
 FILECLOSE

Page 228

FILEEOF

Syntax

FUNCTION FILEOF(reserved) as INTEGER

Description

FILEOF is built into version 8.30 and later.

FILEOF returns 1 when the end of file has been read.

reserved is ignored for now, but may be used in a future version.

Example

See FILEREADBYTE

Differences from other BASICs

 no equivalent Visual BASIC
 no equivalent in PBASIC

See also

 FILEOPEN
 FILEWRITEBYTE
 FILEREADBYTE
 FILEREADDIR
 FILECLOSE

Page 229

FILECLOSE

Syntax

SUB FILECLOSE(reserved)

Description

FILECLOSE is built into version 8.30 and later.

FILECLOSE closes the currently open file . In this version ONLY ONE file may be open at a time

reserved may be used in a future version, and is ignored for now.

Example

 fileclose(0)

Differences from other BASICs

 no equivalent Visual BASIC
 no equivalent in PBASIC

See also

 FILEOPEN
 FILEWRITEBYTE
 FILEREADBYTE
 FILEEOF
 FILEREADDIR

Page 230

User Contributed Floating Point Functions

These functions are implemented using a library written in BASIC that is included at compile time. This
library was contributed by Tod W.

Mathematical Functions
 Trig functions
 Inverse Trig
 Hyperbolic functions
 Power functions
 Misc function
 Random Numbers

Page 231

http://www.coridiumcorp.com

Trigonometric functions

Syntax

#define include_trig
#include <AB_Math.bas>

sin (radians)

cos (radians)

tan (radians)

Description

Part of a user contributed library that computes the standard trigonometric functions.

Example

#define include_trig
#include <AB_Math.bas>

for i=0 to 90 step 10
 print i,sin(_deg2rad *i),cos(_deg2rad *i),tan((_deg2rad *i)
next i

The output would look like:

0 0.000000 1.0000000 0.000000
10 0.1736482 0.9848078 0.1763270
20 0.3420201 0.9396926 0.3639701
30 0.5000000 0.8660253 0.5773502
40 0.6427875 0.7660430 0.8390993
50 0.7660430 0.6427875 1.191754
60 0.8660253 0.5000000 1.732051
70 0.9396926 0.3420202 2.747478
80 0.9848078 0.1736483 5.671279
90 1.0000000 0.000000 Inf

See also

 Inverse Trig
 Hyperbolic

Page 232

Inverse Trigonometric functions

Syntax

#define include_inverse_trig
#include <AB_Math.bas>

asin (x)

acos (x)

atan (x)

atan2(y , x, hypot) ' hypot is called by reference and updated by the call

sec (x)

csc (x)

ctan (x)

asec(x)

acsc(x)

acot(x)

Description

Part of a user contributed library that computes the standard trigonometric functions.

Example

#define include_inverse_trig
#include <AB_Math.bas>

for i= 0 to 10
 print i,sec(i/10)
next i

See also

 Trig functions
 Hyperbolic Trig

Page 233

Hyperbolic Trigonometric functions

Syntax

#define include_hyper
#include <AB_Math.bas>

cosh (radians)

sinh (radians)

tanh (radians)

asinh (x)

acosh (x)

atanh (x)

sech (x)

csch (x)

ctanh (x)

asech(x)

acsch(x)

acoth(x)

Description

Part of a user contributed library that computes the standard trigonometric functions.

Example

#define include_hyper
#include <AB_Math.bas>

for i= 0 to 90 step 10
 print i,sinh(i/10)
next i

See also

 Trig functions
 Hyperbolic

Page 234

Power functions

Syntax

#define include_power_exp_log_sqrt
#include <AB_Math.bas>

sqrt(x)

exp(x) ' return 2.71828 raised to x power

logn(x) ' natural log

pow(x, p) ' returns x raised to p power -- both SINGLE

log (x) ' returns value 10 musted be raised to to produce x

Description

Part of a user contributed library that computes the standard trigonometric functions.

Example

#define include_power_exp_log_sqrt
#include <AB_Math.bas>

for i= 0 to 10
 print i,sqrt(i)
next i

See also

 Trig functions
 Hyperbolic Trig

Page 235

Miscellaneous functions

Syntax

#include <AB_Math.bas>

fix(x) ' return integer value of the SINGLE x

floor(x) ' return integer <= x

ceil(x) ' return integer >= x

powi(x, p) ' returns x raised to INTEGER p power

round(x) ' returns integer value closest to x

Description

Part of a user contributed library that computes the standard trigonometric functions.

Example

#include <AB_Math.bas>

for i= 0 to 10
 print i,powi(2.345, i)
next i

See also

 Trig functions
 Hyperbolic Trig

Page 236

Random Numbers

Syntax

#define include_rand
#include <AB_Math.bas>

init_random

rand

randb (low, high)

Description

Part of a user contributed library that computes the standard trigonometric functions.

Example

#define include_rand
#include <AB_Math.bas>

for i= 1 to 10
 print i, rand, randb (0.2, 5.1)
next i

See also

 Trig functions
 Hyperbolic

Page 237

String Functions

Built-in String Functions
 CHR
 HEX
 LEFT
 LEN
 RIGHT
 STR
 STRCOMP
 VAL

VBSTRING.bas Library (VB style)
 MID
 INSTR
 UCASE
 LCASE

STRING.bas Library (C style)
 MIDSTR
 STRCHR
 STRSTR
 TOLOWER
 TOUPPER

String functions may not be nested. What does this mean?

String functions are built using a string accumulator which is a 256 byte buffer. There is only one string
accumulator due to memory constraints. The general expression evaluation for integers involves a stack, but
it is impractical to have a string stack. So when a string is built from an expression, it uses this string
accumulator. String FUNCTIONs also use this string accumulator to return the string value. So string
FUNCTIONs can not be used after the first operand in a string expression.

As there is only the single string accumulator, string functions should NOT be performed inside INTERRUPT
SUB.

String expressions are parsed left to right, and parenthesis for grouping are not allowed as that is the
equivalent of nesting. However a string expression can have any number of strings being combined into a
single string. So the following is proper-

DIM ast(30) as string
DIM bst(30) as string
DIM cst(30) as string

ast = ast + "abcd" + str(2 + 44 / 33) + str(len(cst)) + "zcxv" + chr(13) + "more stuff" + bst

The chr(13) inserts a carriage return into this string so it spans 2 lines. This is proper as strings only have
two limitations. First that they are less that 256 bytes, and they are terminated by a 0 or null character.

Note that the str(2 + 44 / 33) involves the integer evaluation stack and is OK as that is a separate entity.
Also the str(len(cst)) is valid as that involves a string as stored in memory.

What would not be allowed is something like

Page 238

http://www.coridiumcorp.com

ast = "length is " + str(len(cst + bst)) ' THIS IS INVALID NESTING

because cst + bst would have to be evaluated before ast could be built, and there is no room to do that.

ast = "length is " + str(len(cst) + len(bst)) ' allowed as len is called with simple pointers

User FUNCTIONs

Now with the addition of user defined functions, there is the possibility of a nested string function that the
compiler can not detect. If a string expression calls a user function, and that user function does ANY string
expressions or PRINT statements; then this is a nested string operation. The compiler will not be able to
detect this, and its possible to get unexpected string results or even data abort errors.

ast = user_string_function (1,2,3) ' is OK

ast = str (user_integer_function (1,2,3)) ' is OK

ast = "result of " + user_string_function (1,2,3) ' INVALID string nesting

ast = "result of "+ str(user_integer_function (1,2,3)) ' valid only if no string op or PRINT statement in
user_integer_function

ast = user_string_function (1,2,3) + " returned" ' is OK, as the string function was the first called

ast = str(user_int_function (1,2,3)) + " returned" ' is OK, as the user function was the first called

VB vs. C style String Functions

VB accesses the first character by Stringname.Chars(0) In ARMbasic that first character is accessed by
Stringname(0)

But VB's MID ("This is a string",1,3) returns "Thi".

The existing library of string functions was translated from C, which is always 0 based for the first element.
So

MIDSTR ("This is a string",1,3) returns "his"

Page 239

String Comparisons

Syntax

string1 compare_op string2

string1 = string-variable | byref_string_pointer | string_constant
compare_op = > | >= | = | <> | =< | <
string2 = string1_types | string_functions

Description

This compares the two strings returning -1 if string1 satisfies the comparison_op with string2. Returning
0 if the comparison_op is not true.

String1 and String2 may be constant or variable strings. String2 may also be a FUNCTION of type
STRING.

Example

DIM text(10) as STRING

text = "BAT"
PRINT text > "BBB" ' will display 0
PRINT "BBB" <= text ' will display 0
PRINT text < "BOOT" ' will display 1

PRINT text > "BAA" ' will display 1

Differences from other BASICs

 similar to Visual BASIC
 no equivalent in PBASIC

See also

 CHR
 STR
 VAL

Page 240

CHR

Syntax

CHR(expression)
Description

CHR returns a single byte string containing the character represented by the ASCII code passed to it. For
example, CHR(97) returns "a".

Note:
There is no need for a complimentary function, as that type conversion is automatic, see sample code
below.

Example

PRINT "the character represented by the ASCII code of 97 is:"; CHR(97) ' will print a

DIM a(10) as STRING ' examples of automatic type conversion complimentary to CHR
a ="asdf"

PRINT a(0), chr(a(0)) ' will print 97 a
x = a(0)
PRINT x ' will print 97
if x = "a" then PRINT "it is a" ' will print it is a

Differences from other BASICs

 does not exist in PBASIC
 same function exists in Visual BASIC

See also

 STR
 HEX
 VAL

Page 241

HEX

Syntax

HEX (expression)

Description

This returns the hexadecimal string representation of the INTEGER expression . Hexadecimal values
contain 0-9, and A-F. The size of the result string depends on the integer type passed, it's not fixed.

HEX is not defined for use with SINGLE types

Example

DIM text(10) as String

text = HEX(4096)
PRINT "0x";text ' will display 0x1000

Differences from other BASICs

 same function as Visual BASIC
 similar to PBASIC format directive available in SHIFTIN, SERIN, DEBUGIN

See also

 CHR
 STR
 VAL

Page 242

INSTR ' VB style

Syntax

#include <VBSTRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION INSTR(start , searchee, lookfor)

Description

This FUNCTION written in BASIC searches the string searchee looking for the string lookfor, starting at
the start-th character.

If it is found, the position of the first character of lookfor in searchee is returned, otherwise 0.

start is based on 1 being the first character, which is consistent with the InStr VB function, but
inconsistent with the VB searchee.Chars(0) being the first character. The C style STRSTR version of this
routine uses 0 as the first character.

Example

#include <VBSTRING.bas>

DIM text(10)

text = "HELLO WORLD"
PRINT INSTR(1, text, "LLO") ' will display 3

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 UCASE
 MID

Page 243

LCASE

Syntax

#include <VBSTRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION LCASE(string) as STRING

Description

This FUNCTION written in BASIC shifts the letters of string to lower case .String may be a constant or
variable string.

Example

#include <VBSTRING.bas>

DIM text(10)

text = "HELLO WORLD"
PRINT LCASE(text) ' will display hello world

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 UCASE
 INSTR

Page 244

LEFT

Syntax

LEFT(string, characters)
Description

Returns n-characters starting from the left of string. String may be a constant or variable string.

String functions may not be nested.

Astring = LEFT("this is a test",5) + RIGHT(Bstring,3) ' valid string operation

Astring = LEFT("this "+bstring,5) ' NOT ALLOWED nested operation

Example

DIM text(20) as STRING
text = "hello world"
PRINT LEFT(text, 5) 'displays "hello"

Differences from other BASICs

 none from Visual BASIC
 no equivalent in PBASIC

See also

 RIGHT
 LEN

Page 245

LEN

Syntax

LEN(string)

Description

This returns the length of string in characters.String may be a constant or variable string.

String functions may not be nested.

Example

DIM text$(10) as STRING

text = "0x"+HEX(4096)
PRINT LEN(text) ' will display 6

Differences from other BASICs

 same function as Visual BASIC
 no equivalent in PBASIC

See also

 CHR
 STR
 VAL

Page 246

MID ' VB style

Syntax

#include <VBSTRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION MID(string , start, length) as STRING

Description

This FUNCTION written in BASIC returning the portion of string from the start character for length
characters.

String may be a constant or variable string.

start is based on 1 being the first character, which is consistent with the MID VB function, but
inconsistent with the VB search.chars(0) being the first character. The C style MIDSTR version of this
routine uses 0 as the first character.

Extracting or setting a single byte in a string can be done with an index STRING(3) refers to the 4th byte
of the string (starts from 0).

Example

#include <VBSTRING.bas>

DIM text(10)

text = "HELLO WORLD"
PRINT MID(text, 4,5) ' will display LO WO

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 UCASE
 INSTR

Page 247

MIDSTR ' C style

Syntax

#include <STRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION MIDSTR(string , start, length) as STRING

Description

This FUNCTION written in BASIC returning the portion of string from the start character for length
characters.

String may be a constant or variable string.

MIDSTR is written in C style with 0 being the first character of the string, consistent with VB string
.Chars(0).

Extracting or setting a single byte in a string can be done with an index STRING(3) refers to the 4th byte
of the string (starts from 0).

Example

#include <STRING.bas>

DIM text(10)

text = "HELLO WORLD"
PRINT MIDSTR(text, 4,5) ' will display O WOR

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 TOUPPER
 STRSTR

Page 248

PRINTF

Syntax

SUB PRINTF ("C format string", ParamArray ...)

built-in SUB that calls the existing printf routine in the firmware for versions 8.11 or later (version 7.51 or
later on ARM7 parts)

Description

PRINTF is a way to format printed output. It can be as simple a short string or quite complex specifying
field sizes and pad characters for a number. This routine is written in C and is part of the firmware. As of
8.11 firmware BASIC programs can access this powerful C subroutine. But the BASIC compiler just
passes the parameters to the C and does NO type checking or even counts of parameters.

Rather than duplicate the documentation of PRINTF, there is a great deal of information for printf in
documentation for C such as

C reference for printf

PRINTF in the firmware supports c (BYTE), s (STRING), d (decimal INTEGER), x or X for (hex
INTEGER), e, E, f, g, or G (for SINGLE).

The G format is used by the ARMbasic PRINT, it differs a little from the G format of C. It displays 0.0 or
the range 0.1000000 through 9999999. and outside that it uses D.DDDDDDE+DD and the negative values
as well.

Pad characters of 0 or space can be added to fill out LENGTH or WIDTH and PRECISION. PRECISION
is limited to 0 to 8 characters.

To add CR <carriage return> to the output printed, either use PRINT or print a %c with a value of 13

Example

PRINTF("a simple string")

i = 1234
PRINTF(" %d",i) ' print a decimal integer

DIM x AS SINGLE
x = 12.34
PRINTF(" %1.4f",x) ' print a floating point number with 4 digits of precision

PRINTF("%c%c a string a single %1.5f an integer %d a hex number %x and a carriage return
%c",13,13,x,i,i,13)

will print out --

a simple string 1234 12.3400

a string a single 12.34000 an integer 1234 a hex number 4D2 and a carriage return

Differences from other BASICs

 similar to String.Format in Visual BASIC
 no equivalent in PBASIC

Page 249

http://www.cplusplus.com/reference/clibrary/cstdio/printf/

See also

 SPRINTF

Page 250

RIGHT

Syntax

RIGHT(string, characters)
Description

Returns n-characters starting from the right of the string. String may be a constant or variable string.

String functions may not be nested.

A = LEFT("this is a test",5) + RIGHT(B,3) ' valid string operation

A = RIGHT("this "+b,5) ' NOT ALLOWED nested operation

Example

DIM text(20) as string

text = "hello world"
PRINT RIGHT(text, 5) 'displays "world"

Differences from other BASICs

 this function does not exist in PBASIC
 similar function to Visual BASIC

See also

 LEFT

Page 251

Single Byte access

Syntax

someString(index)

Description

A string is just an array of bytes, terminated by a 0. Strings are limited to 256 characters (no bounds
checking). So individual bytes can be accessed like individual elements in an array.

Extracting or setting a single byte in a string can be done with an index STRING(3) refers to the 4th byte
of the string (starts from 0).

Example

DIM text(10) as string

text(0) = chr("H") ' single character strings like "H" are treated like a character constant
text(1) = chr("E")
text(2) = chr("L")
text(3) = text(2) ' copy the previous character
text(4) = text(3) + 3 ' expressions are OK too, the result is truncated to 8 bits
text(5) = 0

PRINT text ' will display HELLO

Differences from other BASICs

 same as Visual BASIC
 same as PBASIC

See also

 UCASE
 INSTR

Page 252

SPRINTF

Syntax

FUNCTION SPRINTF ("C format string", ParamArray ...) AS STRING

built-in FUNCTION that calls the existing SPRINTF routine in the firmware for versions 8.11 or later
(version 7.51 or later on ARM7 parts)

Description

SPRINTF is a way to format strings. It can be as simple a short string or quite complex specifying field
sizes and pad characters for a number. This routine is written in C and is part of the firmware. As of 8.11
firmware BASIC programs can access this powerful C subroutine. But the BASIC compiler just passes
the parameters to the C and does NO type checking or even counts of parameters.

Rather than duplicate the documentation of SPRINTF, there is a great deal of information for printf in
documentation for C such as

C reference for printf

SPRINTF in the firmware supports c (BYTE), s (STRING), d (decimal INTEGER, x or X for (hex
INTEGER), e, E, f, g, or G (for SINGLE).

The G format differs a little from the G format of C. It copies 0.0 or the range 0.1000000 through 9999999.
and outside that it uses D.DDDDDDE+DD and the negative values as well.

Pad characters of 0 or space can be added to fill out LENGTH or WIDTH and PRECISION. PRECISION
is limited to 0 to 8 characters.

Special characters can be added using %c and filling that value with something like 13 for carriage return,
9 for TAB or 7 to wring the BELL

Example

DIM str(100) AS STRING

i = 1234

DIM x AS SINGLE
x = 12.34

str = SPRINTF("%c%c a string a single %1.5f an integer %d a hex number %x and a carriage return
%c",13,13,x,i,i,13)

PRINT str

will print --

a string a single 12.34000 an integer 1234 a hex number 4D2 and a carriage return

Differences from other BASICs

 similar to String.Format in Visual BASIC
 no equivalent in PBASIC

See also

Page 253

http://www.cplusplus.com/reference/clibrary/cstdio/printf/

 PRINTF

Page 254

STR

Syntax

STR(expression)
Description

STR will convert an integer expression into a string.

For example, STR(3) will become "3", or STR(333) will become "333".

Incidentally, this is the opposite of the VAL function, which converts a string into a number.

STR is also used in certain routines of the Hardware Library to designate that a series of bytes should be
read or written to a string.

Also in the following case the STR function is implied and is not required.

bstring = 333 + " sent" ' will save the ASCI string "333 sent" into b$

The implied STR will work for simple expressions, but anything complex should use STR(), this would
include any function call, array element fetches.

For floating point numbers use SPRINTF.

Example

DIM bstring (10) AS STRING
a = 8421
bstring = STR(a)
PRINT a, b ' will display 8421 8421

Differences from other BASICs

 same function in Visual BASIC
 similar to DEC formatting function in PBASIC

See also

 VAL
 CHR
 HEX
 Hardware Library, Function List

Page 255

STRCHR ' C style

Syntax

#include <STRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION STRCHR(string , char)

Description

This FUNCTION written in BASIC searches string looking for the first instance of char .String may be a
constant or variable string.
If char is not found -1 is returned, otherwise the position of char.

STRCHR is written in C style with 0 being the first character of the string, consistent with VB string
.Chars(0).

Example

#include <STRING.bas>

DIM text(10)

text = "HELLO WORLD"
PRINT STRCHR(text, "W") ' will display 6

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 TOUPPER
 STRSTR

Page 256

STRCOMP

Syntax

STRCOMP(string1, string2)

Description

This compares the two strings returning -1 if string1 would sort before string2. Returning 0 if the two
strings are equal, and 1 if string1 would sort after string2.

String1 and String2 may be constant or variable strings.

String functions may not be nested.

Example

DIM text(10) as STRING

text = "BAT"
PRINT STRCOMP(text, text) ' will display 0
PRINT STRCOMP(text, "BAT") ' will display 0)
PRINT STRCOMP(text, "BOOT") ' will display -1)

PRINT STRCOMP(text, "BAA") ' will display 1

Differences from other BASICs

 same function as Visual BASIC
 no equivalent in PBASIC

See also

 CHR
 STR
 VAL

Page 257

STRSTR ' C style

Syntax

#include <STRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION STRSTR(searchee, lookfor)

Description

This FUNCTION written in BASIC searches the string searchee looking for the string lookfor.

If it is found, the position of the first character of lookfor in searchee is returned, otherwise -1.

STRSTR is written in C style with 0 being the first character of the string, consistent with VB string
.Chars(0).

Example

#include <STRING.bas>

DIM text(10)

text = "HELLO WORLD"
PRINT STRSTR(text, "LLO") ' will display 2

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 TOUPPER
 STRCHR

Page 258

TOLOWER

Syntax

#include <STRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION TOLOWER(string) as STRING

Description

This FUNCTION written in BASIC shifts the letters of string to lower case .String may be a constant or
variable string.

Example

#include <STRING.bas>

DIM text(10)

text = "HELLO WORLD"
PRINT TOLOWER(text) ' will display hello world

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 TOUPPER
 STRSTR

Page 259

TOUPPER

Syntax

#include <STRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION TOUPPER(string) as STRING

Description

This FUNCTION written in BASIC up shifts the letters of string .String may be a constant or variable
string.

Example

#include <STRING.bas>

DIM text(10)

text = "hello world"
PRINT TOUPPER(text) ' will display HELLO WORLD

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 TOLOWER
 STRSTR

Page 260

UCASE

Syntax

#include <VBSTRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION UCASE(string) as STRING

Description

This FUNCTION written in BASIC up shifts the letters of string .String may be a constant or variable
string.

Example

#include <VBSTRING.bas>

DIM text(10)

text = "hello world"
PRINT UCASE(text) ' will display HELLO WORLD

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 LCASE
 INSTR

Page 261

VAL

Syntax

VAL(string)
Description

VAL converts a string to a decimal number. For example, VAL("10") will return 10. The function parses
the string from the left and returns the longest number it can read, stopping at the first non-suitable
character it finds.

Incidentally, this function is the opposite of STR , which converts a number to a string.

string can contain negative numbers or hex numbers when preceded by a $.

VAL does only INTEGER interpretation

Example

DIM astring(20) as STRING
astring = "20xa211"
b = VAL(astring)
PRINT astring, b

20xa211 20

Differences from other BASICs

 similar to Visual BASIC -- VB ignores space and tab characters during the parsing and allows &H
or &O

 similar to formatting directives DEC, HEX in PBASIC
See also

 STR
 HEX
 CHR

Page 262

pointers

* (ARM peripheral access)

equivalent of PEEK and POKE

Syntax

* variable

* constant

* (expression) ' added in version 8.04 of the compiler

Description

The C pointer syntax is used to give direct access to the ARM peripheral registers and memory.

x = *addr ' equivalent of PEEK(addr) for a word

*addr = x ' equivalent of POKE(addr,x) writes x as a word into address addr

This gives the programmer the ability to directly control the ARM hardware. Details on what the registers
do can be found in the NXP User Manuals for the corresponding chip (LPC2103 for ARMmite,
ARMexpress LITE, PRO, LPC2106 for ARMexpress, LPC2138 for ARMweb, and LPC1751/6 for the
PROplus and SuperPRO)

Examples of programming the registers can be found in the BASIClib directory which contains
sub-programs that control various hardware functions.

If you prefer the PEEK or POKE versions you can always use the pre-processor

#define PEEK(addr) (*(addr)) ' the () ensure only addr is used in the address calculation
#define POKE(addr,value) *(addr) = value

Pointers only operate on 32 bit WORD values, and should use WORD or 4-byte alligned addresses.

For byte and halfword access see RD_BYTE , WR_BYTE , RD_HALF and WR_HALF

Example

' from the HWPWM.bas library

'* ---- Timer 2 --
#define T2_TCR * &HE0070004
#define T2_TC * &HE0070008
#define T2_PR * &HE007000C
#define T2_MCR * &HE0070014
#define T2_MR0 * &HE0070018
#define T2_MR1 * &HE007001C
#define T2_MR2 * &HE0070020
#define T2_MR3 * &HE0070024

 T2_PR = prescale
 T2_TCR = TxTCR_COUNTER_ENABLE ' Timer1 Enable

 T2_MR3 = cycletime -1

Page 263

 T2_MCR = &H400 ' rollover when count reaches MR3

Differences from other BASICs

 No equivalent in Visual BASIC
 no direct equivalent in PBASIC, CONFIGPIN is a similar function

See also

 CPU details
 ADDRESSOF
 RD_BYTE
 RD_HALF
 WR_BYTE
 WR_HALF

Page 264

QUICKSORT

Syntax

SUB QUICKSORT(buffer, number_of_elements)

Description

QUICKSORT is built into version 8.30 and later.

This version of QuickSort, will sort number_of_elements integers in buffer.

Example

#define MAX_NUMBERS 100

dim numbers(MAX_NUMBERS) ' BASIC arrays have elements 0 to
MAX_NUMBERS

for i=0 to MAX_NUMBERS

 numbers (i)=MAX_NUMBERS-i

next

for i= 0to 10

 print numbers(i)

next

print

print "now sort the numbers"

quicksort(addressof numbers, MAX_NUMBERS+1)

for i=0 to 10

 print numbers(i)

Page 265

next

Differences from other BASICs

 no equivalent Visual BASIC
 no equivalent in PBASIC

See also

 TOUPPER
 STRSTR

Page 266

Version 7 Hardware Library

With Version 7, most of the built-in firmware hardware routines have been replaced by ARMbasic routines
that can be accessed by #include <filename>.

Version 7 is more like Visual BASIC.

Version 8 is the same firmware for ARM Cortex processors.

The Welcome message shows the firmware version level of the ARMexpress Family device. This is
displayed when the device is STOPped in the BASICtools or when reset and no user program has been
loaded.

Hardware Library
 Date and Time Functions
 Function List
 Hardware Specs
 Interrupts
 Logic Scope
 Pin Controls

Page 267

https://www.coridium.us/coridium/shop/boards/bd05-stamp

Date and Time Functions

Date and Time Functions available on all products

 TIMER
 WAIT
 WAITMICRO

Date and Time Functions that require RTC hardware

 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 WEEKDAY
 YEAR

The ARMmite, ARMweb, DINkit and SuperPRO have a provision to add a battery to keep these time functions
running when power is removed. That battery (ML2020) has to be installed by the user or can be special
ordered for larger volume customers.

The BASICchip does not have RTC hardware. The PROplus board does not have the RTC crystal installed.

Page 268

http://www.coridiumcorp.com

DAY

The ARMmite, ARMweb, DINkit and SuperPRO have a provision to add a battery to keep these time functions
running when power is removed. That battery (ML2020) has to be installed by the user or can be special
ordered for larger volume customers.

The BASICchip does not have RTC hardware. The PROplus board does not have the RTC crystal installed.

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION DAY(value) ' when called with 0, the current day is returned, otherwise set the current day

Description

Function setting or returning the day of the month.

When called with a non-zero value, the DAY is changed.
Range 1 to 28, 29, 30, or 31
(depending on the month and whether it is a leap year).

Example

#include <RTC.bas>

DAY (14)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":";
SECOND(-1)

The output would look like:

This is 4/14/2006 at 13:15:30

Page 269

HOUR

The ARMmite, ARMweb, DINkit and SuperPRO have a provision to add a battery to keep these time functions
running when power is removed. That battery (ML2020) has to be installed by the user or can be special
ordered for larger volume customers.

The BASICchip does not have RTC hardware. The PROplus board does not have the RTC crystal installed.

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION HOUR(value) 'When called with -1 the current value for HOUR is returned.

Description

Function setting or returning the hour.

When called with a value >= 0, the HOUR is changed.
Range 0 to 23.

Example

#include <RTC.bas>

HOUR (13)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":";
SECOND(-1)

The output would look like:

This is 4/14/2006 at 13:15:30

Page 270

IDLE

Syntax

IDLE (seconds)
Description

Delay program execution a number of seconds.

This subroutine is defined in RTC.bas It was originally called SLEEP, but the BASIC compiler now uses
that to generate a WFI instruction

Example

#include <RTC.bas>

FOR I=0 TO 7
 IDLE(1)
 IO(I)= 1 ' set each pin HIGH one after the other every second
NEXT I

Differences from other BASICs

 no equivalent in Visual BASIC
 similar to SLEEP in PBASIC

See also

 WAIT
 WAITMICRO

Page 271

MINUTE

The ARMmite, ARMweb, DINkit and SuperPRO have a provision to add a battery to keep these time functions
running when power is removed. That battery (ML2020) has to be installed by the user or can be special
ordered for larger volume customers.

The BASICchip does not have RTC hardware. The PROplus board does not have the RTC crystal installed.

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION MINUTE(value) 'When called with -1 the current value for MINUTE is returned.

Description

Function setting or returning the day of the month.

When called with a value >= 0, the MINUTE is changed.
Range 0 to 59

Example

#include <RTC.bas>

MINUTE (15)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":";
SECOND(-1)

The output would look like:

This is 4/14/2006 at 13:15:30

Page 272

MONTH

The ARMmite, ARMweb, DINkit and SuperPRO have a provision to add a battery to keep these time functions
running when power is removed. That battery (ML2020) has to be installed by the user or can be special
ordered for larger volume customers.

The BASICchip does not have RTC hardware. The PROplus board does not have the RTC crystal installed.

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION MONTH(value) ' call with 0 or less to return the present MONTH, >0 will set the MONTH

Description

Function setting or returning the month.

When called with a non-zero value, the MONTH is changed.
Range 1 to 12.

Example

#include <RTC.bas>

MONTH (4)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":";
SECOND(-1)

The output would look like:

This is 4/14/2006 at 13:15:30

Page 273

SECOND

The ARMmite, ARMweb, DINkit and SuperPRO have a provision to add a battery to keep these time functions
running when power is removed. That battery (ML2020) has to be installed by the user or can be special
ordered for larger volume customers.

The BASICchip does not have RTC hardware. The PROplus board does not have the RTC crystal installed.

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION SECOND(value) 'When called with -1 the current value for SECOND is returned.

Description

Function setting or returning the current SECOND.

When called with a value >= 0, the SECOND is changed.
Range 0 to 59

Example

#include <RTC.bas>

SECOND (30)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":";
SECOND(-1)

The output would look like:

This is 4/14/2006 at 13:15:30

Page 274

TIMER

Syntax

TIMER
Description

TIMER is a free running timer that increments every microsecond. Its it readable and writable using this
keyword.

Interrupts that are occurring for other functions and serial input may make times using TIMER look longer
than actual. Interrupts can be disabled for short periods to do fine time measurements.

For Cortex parts with firmware version after 8.27, the SysTick timer is used, which is a 24 bit counter that
is set to generate an interrupt every 65.536 milliseconds. That interrupt increments a 16 counter that is
combined with SysTick to generate the 32 bit TIMER value. For finer resolution a WAITMICRO routine
has been added. And for these parts, disabling interrupts will keep the TIMER from incrementing past 65
msec.

For older LPC2103, 2106 and 2138 parts TIMER0 was used rather than Systick.

Example

START = TIMER
WHILE (TIMER-START < 10) ' wait for 10 micro-seconds
LOOP

Differences from other BASICs

 no equivalent in PBASIC
 no equivalent in Visual BASIC

See also

 MINUTE
 HOUR
 DAY
 MONTH
 YEAR
 WEEKDAY

Page 275

WAIT

Syntax

WAIT (milliseconds)
Description

Delay program execution a number of milliseconds.
1000 milliseconds is one second

Example

Print tick once per second for ever.

WHILE 1
 PRINT "tick"
 WAIT(1000)
LOOP

Differences from other BASICs

 no equivalent in Visual BASIC
 PBASIC has a similar function PAUSE that uses a CPU dependent "tick" value

See also

 WAITMICRO
 IDLE

Page 276

WAITMICRO

Syntax

WAITMICRO (microseconds)
Description

Delay program execution a number of microseconds. This function was added to Cortex parts in version
8.27 firmware and later
It has better resolution than using TIMER. It is limited to times less than 65536 microseconds.

Example

Wiggle a line at 100 KHz.

IO(5)= 0
WHILE 1
 OUT(5)= 0
 WAITMICRO(50)
 OUT(5)= 1
 WAITMICRO(50)
LOOP

Differences from other BASICs

 no equivalent in Visual BASIC
 PBASIC has a similar function PAUSE that uses a CPU dependent "tick" value

See also

 WAIT
 TIMER

Page 277

WEEKDAY

The ARMmite, ARMweb, DINkit and SuperPRO have a provision to add a battery to keep these time functions
running when power is removed. That battery (ML2020) has to be installed by the user or can be special
ordered for larger volume customers.

The BASICchip does not have RTC hardware. The PROplus board does not have the RTC crystal installed.

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION WEEKDAY(value) 'When called with -1 the current value for WEEKDAY is returned.

Description

Function setting or returning the day of the week.

When called with zero or greater value, the WEEKDAY is changed.
0 corresponding to Sunday through 6 corresponding to Saturday

Example

#include <RTC.bas>
 '...
DIM dayname(15) as string
 '...
SECOND (30)
MINUTE (15)
HOUR (13)
DAY (14)
MONTH (4)
YEAR (2006)

SELECT WEEKDAY(-1)
CASE 0
 dayname = "Sunday"
CASE 1
 dayname = "Monday"
CASE 2
 dayname = "Tuesday"
CASE 3
 dayname = "Wednesday"
CASE 4
 dayname = "Thursday"
CASE 5
 dayname = "Friday"
CASE 6
 dayname = "Saturday"
CASE ELSE
 dayname = "not possible"
ENDSELECT

PRINT "This is "; dayname, MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1);
":"; SECOND(-1)

The output would look like:

Page 278

This is Friday 4/14/2006 at 13:15:30

Page 279

YEAR

The ARMmite, ARMweb, DINkit and SuperPRO have a provision to add a battery to keep these time functions
running when power is removed. That battery (ML2020) has to be installed by the user or can be special
ordered for larger volume customers.

The BASICchip does not have RTC hardware. The PROplus board does not have the RTC crystal installed.

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION YEAR(value) 'When called with 0 the current value for YEAR is returned.

Description

Function setting or returning the year.

When called with a non-zero value, the YEAR is changed.
Range 1 to 4095.

Example

#include <RTC.bas>

YEAR (2006)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":";
SECOND(-1)

The output would look like:

This is 4/14/2006 at 13:15:30

Page 280

Flash Access

Flash Control Functions
 FREAD
 WRITE

Page 281

FREAD

Syntax

SUB FREAD (FlashAddr, Destination, size)

Destination = arrayname | stringname

size in bytes

FlashAddr an address in RAM or Flash

Description -- added version 7.13

The built-in subroutine FREAD copies data stored in the Flash memory to the Destination array, for size
bytes. When a string is used, it is treated like a byte array, not a 0 terminated string

You can also directly access the Flash with pointers. To read a word in Flash, *FlashAddr will return the
32 bit value starting at that address.

Example

' simple example of write and read
DIM A(511) as string
DIM B(511) as string
 '...

WRITE (&H6000, A, 512) ' this will erase the &H6000 sector, as its the first encountered
WRITE (&H6200, A, 512) ' no erasure is required, as it was erased in the last call

FREAD (&H6200, B, 512)
 '...

WRITE (&H6000, A, 0) ' this forces an erase of sector &H6000, needed as it was the last sector
erased
WRITE (&H6000, A, 512)

 '...

WRITE (&H6000, A, 512) ' as the same block is being written it will automatically be erased
WRITE (&H6000, A, 512)

Differences from other BASICs

 Does not exist in Visual BASIC
 PBASIC has a similar function

See also

 WRITE
 Memory Map
 CPU details

Page 282

Memory Maps

All addresses are hex values.

 BASICchip, ARMmite ARMexpress LITE, ARMmite PRO, PROplus

ARMmite ARMexpress LITE, ARMmite PRO, PROplus

 ARMexpress

Page 283

ARMexpress

 SuperPRO

Page 284

SuperPRO

ARMweb and DINkit/Ethernet

Page 285

ARMweb and DINkit/Ethernet

DINkit (USB) and Stand-alone compiler

User code starts loading at &H3000.

Strings and DATA statements are stored in the last Flash Block, which depends on the Memory Map of the
device (details in the NXP User Manuals). In the DINkit the last Flash block is from &H7C000 to &H7CFFF

LPC2103 products - ARMmite, ARMmite PRO and ARMexpress LITE

20.48K is available for code, DATA statements and string constants.

5.12K is available for data (1280 words)

LPC2106 ARMexpress

Page 286

106.49K is available for code, DATA statements and string constants.

62.5K is available for data (15K words)

LPC2138 ARMweb, DINkit (Ethernet)

131K is available for code, DATA statements and string constants.

5.12K is available for data (1280 words)

DATA Memory Allocation

Local variables for FUNCTIONs and SUBs are allocated from global memory. This allows for a smaller stack
size and faster calls to FUNCTIONs and SUBs. The ARMmite has only 8K total and has no stack overflow
checking.

Page 287

WRITE

Syntax

FUNCTION WRITE (FlashAddr, Source, subsectorsize)

Source = arrayname | stringname

subsectorsize = 256* | 512 | 1024 | 2048 | 4096 | 8192* in bytes

Description -- added version 7.13

WRITE copies data into the Flash memory space shared with the user code Flash space. Generally
space above 0x4000 is available, but there is no protection for writing over your program. Flash is
organized in sectors, 4K in ARMmite, ARMexpressLITE, 8K sectors in the ARMexpress, the ARMweb
has a mix of 4K and 32K sectors. (details in the NXP User Manual).

For firmware versions 8.00 to 8.35, you must disable INTERRUPTs before calling WRITE and reenable
them after the call.

Writing consists of erasing the whole sector and then writing a subsector or all.

Erases will erase the entire sector.

subsectorsize portions may be written (ARMexpress allows up to 8K but not 256). FlashAddr must be
aligned to subsectorsize .

Data is copied from a string or array to the Flash. Only fixed subsectorsize sizes are allowed. This
function does not look for 0 terminators when a string is the source.

The way the Flash operates, is that sectors are erased which sets all the bits to 1, or &HFFFFFFFF.
When you write into a sector, bits can be changed to 0, they can not be written back to 1. Only sectors
(4K, 8K or 32K) can be erased, and all bits in the sector are effected. Writes operate on subsector which
can be as small as 256 bytes.

On reset an internal variable which indicates which sector was written to last is set to 0. Any call to
WRITE will check the sector corresponding to the FlashAddr. If the sector is different than the last sector
written, then this sector will be erased, else if it is the same then the erase does not occur.

This works for the most common use of writing to Flash, which is to start at the low end and work up.

As of firmware version 8.20 you can override this erase algorithm by setting the low 2 bits of FlashAddr.

 set bit 1 to force an erasure of the whole sector
 set bit 0 to disable any erase of the sector

These routines call the IAP routines for write, erase and prep commands. More details in the user
manual for the corresponding CPU.

0 is returned on success, Non-zero error code when there is an error refer to IAP section in CPU user
manual for definitions .

Example

' simple example of write and read
DIM A(511) as string
DIM B(511) as string
 '...

Page 288

WRITE (&H6000, A, 512) ' this will erase the &H6000 sector, as its the first encountered
WRITE (&H6200, A, 512) ' no erasure is required, as it was erased in the last call

 '... the following examples the user explicitly controls the erase operation with the lower 2 bits of the
address

WRITE (&H6002, A, 512) ' this forces an erase of sector &H6000, needed as it was the last
sector written to

 '...
WRITE (&H6201, A, 512) ' as the same block is being written no erase required

Differences from other BASICs

 Does not exist in Visual BASIC
 PBASIC has a similar function

See also

 FREAD
 Memory Map
 CPU details

Page 289

Version 7 -- Hardware Function List

B

 BAUD

C

 COUNT

F

 FREAD

H

 HWPWM

I

 I2CIN

 I2COUT

O

 ON

 OWIN

 OWOUT

P

 PULSIN

 PULSOUT

 PWM

T

 RCTIME

 RXD

S

 SERIN

 SERINtimeout

 SEROUT

 SHIFTIN

 SHIFTOUT

 SPIBI

 SPIIN

 SPIOUT

T

 TXD

W

 WRITE

Page 290

HWPWM

This function is available on ARMmite, ARMmite Wireless, ARMexpress LITE and ARMmite PRO,
SuperPRO, PROplus, PROstart, BASICchip, and BASICchip-SO20

Library

#include <HWPWM.bas> ' can be used for all chips, it now includes one of the following

#include <HWPWM17.bas> ' for the PROplus and SuperPRO LPC17xx based boards.

#include <HWPWM11.bas> ' for the BASICchip, BASICboard and PROstart

#include <HWPWM8.bas> ' for the BASICchip-SO20

H

 HWPWM

Interface

' channels are 1-8
' cycletime and hightime are in microseconds

SUB HWPWM (channel, cycletime, hightime)

Cycletime should be the same for all channels, and will be set to the last value programmed. HWPWM is
used with the PWM hardware which consists of hardware registers which compare a counter that is counting
from 0 to cycletime-1. If you need to change the cycletime, you should write directly to the registers, as if
you write a value that is less than the current count, the cycle will count until the counter rolls over to 0,
(probably not what you want, as these comparators look for equality.

BASICchip, BASICboard and PROstart version

The BASICchip supports up to 4 channels of hardware driven PWM. The IO direction of the pin will be set to
output. Once programmed these will continue to generate the specified PWM until re-programmed or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. It is assumed, but not
enforced that cycletimes for all channels will be the same.

 channel1 IO(8)
 channel2 IO(9)
 channel3 IO(10)
 channel4 IO(41)

If TIMER interrupts are used, then only 4 hardware PWM channels are available

BASICchip SO-20 version

The BASICchip supports up to 4 channels of hardware driven PWM on any of the 15 pins other than RESET,
RXD0 and TXD0

 channel1 IO(8) or IO(12) or IO(16)
 channel2 IO(1) or IO(9) or IO(13) or IO(17)

Page 291

 channel3 IO(2) or IO(6) or IO(10) or IO(14)
 channel4 IO(3) or IO(7) or IO(11) or IO(15)

ARMmite and Wireless ARMmite version

The ARMmite supports up to 8 channels of hardware driven PWM. The IO direction of the pin will be set to
output. Once programmed these will continue to generate the specified PWM until re-programmed or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. It is assumed, but not
enforced that cycletimes for all channels will be the same.

 channel1 IO(0)
 channel2 IO(1)
 channel3 IO(2)
 channel4 IO(3)
 channel5 IO(4)
 channel6 IO(9)
 channel7 IO(10)

 channel8 IO(11)

ARMmite PRO version

The ARMmite PRO also supports up to 8 channels of hardware driven PWM. The IO direction of the pin will
be set to output. Once programmed these will continue to generate the specified PWM until re-programmed
or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. It is assumed, but not
enforced that cycletimes for all channels will be the same.

 channel1 IO(0)
 channel2 IO(1)
 channel3 IO(8)
 channel4 IO(5)
 channel5 IO(14)
 channel6 IO(10)
 channel7 IO(11)

 channel8 IO(3)

ARMexpress LITE version

The ARMexpress LITE supports up to 6 channels of hardware driven PWM. The IO direction of the pin will be
set to output. Once programmed these will continue to generate the specified PWM until re-programmed or
reset. 2 of the channels are not available on the pins.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. It is assumed, but not
enforced that cycletimes for all channels will be the same.

 channel1 IO(5)
 channel2 IO(6)
 channel3 IO(3)

Page 292

 channel4 not available
 channel5 IO(14)
 channel6 not available
 channel7 IO(13)

 channel8 IO(15)

SuperPRO version

The PROplus and SuperPRO support up to 6 channels of hardware driven PWM. The IO direction of the pin
will be set to output. Once programmed these will continue to generate the specified PWM until
re-programmed or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. It is assumed, but not
enforced that cycletimes for all channels will be the same.

 channel1 IO(64)
 channel2 IO(65)
 channel3 IO(66)
 channel4 IO(67)
 channel5 IO(68)
 channel6 IO(69)
The LPC17xx series processors also have an additional 6 channels designed to drive motors. See details in
the Motor PWM Control chapter of the NXP LPC17xx User Manual. Also these pins can be re-assigned as
selected by the PINSEL registers.

Example

#include <HWPWM.BAS> 'use HWPWM17 for SuperPRO / PROplus
 '...

'generate 1KHz with 750 and 100 uSec high signals on pins 1,2

HWPWM (2,1000,750)
HWPWM (3,1000,100)

'250 Hz with 1000, 500, 100 uSec high and LOW signals on pins 0,1,2,3

HWPWM (1,4000,1000)
HWPWM (2,4000,500)
HWPWM (3,4000,100)
HWPWM (4,4000,0)

Page 293

I2C

Library

#include <I2C.bas>

I

 I2CIN

 I2COUT

Interface

SUB I2CIN (DATApin, CLKpin, addr, OUTcnt, BYREF OUTlist as string, INcnt, BYREF INlist as string)

FUNCTION I2COUT (DATApin, CLKpin, addr, OUTcnt, BYREF OUTlist as string)

#define I2Cspeed100 ' add this statement before the #include <I2C.bas> for 100 Kb shift rate
#define I2Cspeed50 ' for 50 Kb shift rate
#define I2CslaveCLKstretch ' trial code to support slave clock stretching (unverified on a slave that
stretches clocks)

Description

These libraries are written for single master operation of the ARM talking to possible multiple slaves selected
by address.

I2CIN will send OUTcnt bytes from OUTlist and then receives INlist bytes as i2c serial data on CLKpin and
DATApin from the i2c device at addr. OUTcnt may be -1 and OUTlist empty. If OUTcnt is 0, then the string
will be sent until a 0, CR or LF character is found in OUTlist .

INcnt bytes will be received. If INcnt is 0, then the string will be filled with bytes until a 0, CR or LF character
is received. Note that no bounds checking is performed on the input, and if a 0, CR, or LF is never received
then this routine will hang. As there is no bounds checking its possible to overwrite other variables, if less
than 256 bytes have been allocated for the InputList string.

I2COUT will send OUTcnt bytes from OUTlist bytes as i2c serial data on CLKpin and DATApin to the i2c
device at addr. If OUTcnt is 0, then the string will be sent until a 0, CR or LF character is found in OUTlist. If
the i2c device does not respond 0 is returned by I2COUT, otherwise 1.

The data rate is 300Kb.

Example

#include <I2C.bas>
...

DIM shortMessage(20) as STRING
DIM shortResponse(20) as STRING

Page 294

' test the EEPROM 24LC02 on pins 0 == SDA and 1 == SCL
shortMessage(0)= 0 ' address into EEPROM
shortMessage(1)= 11 ' data
shortMessage(2)= 22
shortMessage(3)= 33
shortMessage(5)= 44
shortMessage(6)= 55
shortMessage(7)= 66

present = I2COUT (0, 1, 0xA0, 8, shortMessage)
if present = 0 then print "NO i2c device ***"

WAIT(10) ' allow time for data to be written
I2CIN(0, 1, 0xA0, 1,shortMessage, 7, shortResponse)

' now do I2CIN as separate operations

I2COUT (0, 1, 0xA0, 1, shortMessage) ' send just the address and offset
I2CIN(0, 1, 0xA0, -1,"", 7, shortResponse)

Page 295

I2CIN

Syntax

#include <I2C.bas> ' source in /Program Files/Coridium/BASIClib

SUB I2CIN (DATApin, CLKpin, addr, OUTcnt, BYREF OUTlist as string, INcnt, BYREF INlist as string)
Description

I2CIN will send OUTcnt bytes from OUTlist and then receives INlist bytes as i2c serial data on CLKpin
and DATApin from the i2c device at addr. OUTcnt may be -1 and OUTlist empty. If OUTcnt is 0, then the
string will be sent until a 0, CR or LF character is found in OUTlist .

If INcnt is 0, then the string will be filled with bytes until a 0, CR or LF character is received. Note that no
bounds checking is performed on the input, and if a 0, CR, or LF is never received then this routine will
hang. As there is no bounds checking its possible to overwrite other variables, if less than 256 bytes
have been allocated for the InputList string.

Data is shifted in at 280 Kbits/sec. See the #defines to change this rate.

Example

#include <I2C.bas>
 '...
DIM shortMessage(20) as STRING
DIM shortResponse(20) as STRING
 '...

' test the EEPROM 24LC02 on pins 0 == SDA and 1 == SCL
shortMessage(0)= 0 ' address into EEPROM

I2CIN(0, 1, 0xA0, 1,shortMessage, 7, shortResponse)

Differences from other BASICs

 PBASIC output formatting not supported
 no equivalent in Visual BASIC

See also

 I2COUT
 I2C Support

Page 296

I2COUT

Syntax

#include <I2C.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION I2COUT (DATApin, CLKpin, addr, OUTcnt, BYREF OUTlist as string)

Description

I2COUT will send OUTcnt bytes from OUTlist bytes as i2c serial data on CLKpin and DATApin to the i2c
device at addr. If OUTcnt is 0, then the string will be sent until a 0, CR or LF character is found in
OUTlist. If the i2c device does not respond 0 is returned by I2COUT, otherwise 1.

I2COUT returns a 1 if an I2C device responds, else 0.

The data rate is 280Kb. See the #defines to change this rate.

Example

#include <I2C.bas>
 '...

DIM shortMessage(20) as STRING
 '...

' test the EEPROM 24LC02 on pins 0 == SDA and 1 == SCL
shortMessage(0)= 0 ' address into EEPROM
shortMessage(1)= 11 ' data
shortMessage(2)= 22
shortMessage(3)= 33
shortMessage(5)= 44
shortMessage(6)= 55
shortMessage(7)= 66

present = I2COUT (0, 1, 0xA0, 8, shortMessage)
if present = 0 then print "NO i2c device ***"

Differences from other BASICs

 PBASIC output formatting not supported
 PBASIC regADDR and secondADDR are done in the OutputList
 no equivalent in Visual BASIC

See also

 I2CIN
 I2C Support

Page 297

OneWire

Library

#include <ONEWIRE.bas>

O

 OWIN

 OWOUT

Interface

SUB OWIN (pin, OUTcnt, BYREF OUTlist as string, INcnt, BYREF INlist as string)

FUNCTION OWOUT (pin, OUTcnt, BYREF OUTlist as string)

Description

OWIN begins with a RESET/Presence sequence on the designated pin.

Then OUTcnt bytes from OUTlist will be transferred to the device to select the command. OUTcnt may be -1
and OUTlist empty. If OUTcnt is 0, then OUTlist bytes will be sent until a value of 0 is found (the 0 will not be
sent). An empty OUTlist can be represented by "".

Following that the INcnt bytes will be read back from the device and saved in INlist .

If INcnt is 0, then the string will be filled with bytes until a 0, CR or LF character is received. Note that no
bounds checking is performed on the input, and if a 0, CR, or LF is never received then this routine will
hang. As there is no bounds checking its possible to overwrite other variables, if less than 256 bytes have
been allocated for the InputList string.

OWOUT begins with a RESET/Presence sequence on the designated Pin.

If a one-wire device responds OWOUT will return 1, else 0.

Following that the OUTcnt bytes from OUTlist will be sent to the device. OUTlist can be a constant string.

The bit order for the 1-Wire device is assumed to be LSB (bit 0) first. The REV function can be used to
change the bit order.

Example

#include <ONEWIRE.bas>
 '...

DIM message(20) as string
DIM response(20) as string

message = chr(&Hcc)+chr(&Hf)+chr(6)+chr(&Haa)+chr(&H55)

 ' write to the scratch pad of a DS2430
present = owout (7,5,message)
print present

Page 298

message = chr(&Hcc)+chr(&Hf)+chr(6)

print present
owin (7, 3, message, 2, response)
print hex(response(0)),hex(response(1))

Page 299

OWIN

Syntax

#include <ONEWIRE.bas> ' source in /Program Files/Coridium/BASIClib

SUB OWIN (pin, OUTcnt, BYREF OUTlist as string, INcnt, BYREF INlist as string)

Description

OWIN begins with a RESET/Presence sequence on the designated Pin.

Then OUTcnt bytes will be transferred to the device to select the command. OUTcnt may be 0, with an
empty string "".

Following that the INcnt bytes InputList will be read back from the device. If INcnt equals 0, then the string
will be filled with bytes until a 0, CR or LF character is received. Note that no bounds checking is
performed on the input, and if a 0, CR, or LF is never received then this routine will hang. As there is no
bounds checking its possible to overwrite other variables, if less than 256 bytes have been allocated for
the InputList string..

The bit order for the 1-Wire device is assumed to be LSB (bit 0) first. The REV function can be used to
change the bit order.

Example

#include <ONEWIRE.bas>

DIM outbytes(10) as string
DIM inbytes(10) as string

 ' write to the scratch pad of a DS2430
outbytes(0)=&Hcc
outbytes(1)=&Hf
outbytes(2)=&H6
outbytes(3)=&Hbe
outbytes(4)=&H41

present = owout (7 ,5, outbytes)
print present

outbytes(0)=&Hcc
outbytes(1)=&Haa
outbytes(2)=&H6

owin (7, 3, outbytes, 2, inbytes)
print hex(inbytes(0)),hex(inbytes(1))

Differences from other BASICs

 no equivalent in Visual BASIC
 simplified from PBASIC

See also

 OWOUT

Page 300

OWOUT

Syntax

#include <ONEWIRE.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION OWOUT (pin, OUTcnt, BYREF OUTlist as string)

Description

OWOUT begins with a RESET/Presence sequence on the designated Pin.

If a one-wire device responds the FUNCTION OWOUT will return 1, else 0.

Following that OUTcnt bytes from the OUTlist will be sent to the device. If OUTcnt is 0, then bytes will be
sent from OUTlist until a 0 is found. (the 0 is NOT sent).

The bit order for the 1-Wire device is assumed to be LSB (bit 0) first. The REV function can be used to
change the bit order.

Example

#include <ONEWIRE.bas>

DIM outbytes(10) as string

 ' write to the scratch pad of a DS2430
outbytes(0)=&Hcc
outbytes(1)=&Hf
outbytes(2)=&H6
outbytes(3)=&Hbe
outbytes(4)=&H41

present = owout (7 ,5, outbytes)
print present

Differences from other BASICs

 no equivalent in Visual BASIC
 simplified than PBASIC

See also

 OWIN

Page 301

BIt Banged Serial -- UART use is preferred

Library

#include <SERIAL.bas> ' PBASIC library, these routines were written for ARMexpress, and included
for general reference,UART functions should be used instead of these.

Library sources are in the BASIClib directory.

This library has some initialization code that can either be copied into your program or the code can be
run inline as in the following-

code without a main:

#include <SERIAL.bas>
... user code

code with a main:

initSerial:
#include <SERIAL.bas>
return
...
main:
 gosub initSerial

B

 bbBAUD

R

 bbRXD

S

 SERIN

 SERINtimeout

 SEROUT

T

 bbTXD

Interface

DIM bbBAUD(16)
SERINtimeout = 500000 ' timeout for bit-banged serial input in microseconds -- this is the 0.5 second
default value

FUNCTION bbRXD(pin)
SUB bbTXD(pin, ch)

FUNCTION SERIN (pin, baud, posTrue, INcnt, BYREF INlist as string)
SUB SEROUT(pin, baud, posTrue, OUTcnt, BYREF OUTlist AS STRING)

Description

Page 302

SERIN receives INlist bytes as asynchronous serial data on pin at a baudrate. PosTrue if set to 0 then the
data is inverted.

INcnt is the number of bytes that will be received. If INcnt is 0, then the string will be filled with bytes until a
0, CR or LF character is received. Note that no bounds checking is performed on the input, and if a 0, CR, or
LF is never received then this routine will hang. As there is no bounds checking its possible to overwrite
other variables, if less than 256 bytes have been allocated for the InputList string.

SERIN will timeout after 0.5 seconds and return -1 and place 255 in the next item in the INlist before the
timeout. These routines are "bit-banged" by the processor, so the processor is consumed during these
operations. Interrupts are also disabled during each byte for these operations. The hardware UART0 can be
used see RXD0 or DEBUGIN . The timeout can be changed with SERINtimeout.

Baudrates can be up to 115.2 Kbaud for all pins on transmit. Receive rates to 57Kb

DIM choice(10) as STRING

SERIN(1,9600,0, choice) ' read a UserCode CR/LF terminated

SELECT VAL (choice)
 CASE 123 ...

SEROUT sends a string of characters out on pin as an asynchronous data stream. baud and posTrue set
the parameters for the transmission. OUTcnt is the number of bytes that will be transmitted. If OUTcnt is 0,
then OUTlist will be sent until a 0 is encountered (the 0 is not sent).

ch = bbRXD(pin) ' read a character from pin as an asynchronous stream (bbBAUD must have been set
before use)

bbRXD is a bit banged routine, so that the CPU will wait up to 0.5 seconds for a character to be received.
The timeout can be changed with SERINtimeout.

bbTXD(pin, "A") ' send an "A" to pin as an asynchronous serial stream

Page 303

BAUD

Syntax

#include <SERIAL.bas>

DIM bbBAUD(pin) ' declared inside SERIAL.bas

Description

bbBAUD (pin) will set the baudrate for the pin that will be later used by either bbRXD or bbTXD functions.

Baudrates can be up to 115.2 Kbaud for transmit, 57Kbaud for receive.

Example

#include <SERIAL.bas>

bbBAUD(2) = 19200 ' set the baud rate for serial I/O on pin 2

bbBAUD(1) = bbBAUD(2) ' set the baud rate for pin 1 the same as that for pin 2

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 bbTXD
 bbRXD

Page 304

RXD

Syntax

#include <SERIAL.bas>

bbRXD (pin)

Description

bbRXD (pin) will receive a single byte of data that is shifted as an asynchronous serial stream. This
function is similar to SERIN, but has less overhead and only receives a single byte. The baudrate for the
pin should be set before using bbRXD, that is done using the bbBAUD(pin) function.

RXD will return 0-255 if there was data present. bbRXD will timeout after 0.5 seconds and return -1
(&HFFFFFFFF) if there is no serial stream detected on pin .

These routines are "bit-banged" by the processor, so the processor is consumed during these
operations. Interrupts are also disabled during each byte for these operations.

As of version 6.21 the 0.5 second timeout can be changed by SERINtimeout.

Baudrates can be up to 57 Kbaud for all pins.

Example

#include <SERIAL.bas>

bbBAUD(1) = 9600 ' set the baud rate for serial I/O on pin 1

' Wait for serial input on pin 1
DO
 MyByte = bbRXD(1)
UNTIL MyByte >= 0

Differences from other BASICs

 no equivalent in Visual BASIC
 preferred alternate to SERIN of PBASIC

See also

 bbBAUD
 bbTXD
 SERIN

Page 305

SERIN

Syntax

#include <SERIAL.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION SERIN (pin, baud, posTrue, INcnt, BYREF INlist as string)

Description

SERIN receives INcnt bytes into the INlist string as asynchronous serial data on pin at a baudrate. Data
is positive TRUE PosTrue if set to 1, else the data is inverted.

If INcnt is 0, then the string will be filled with bytes until a 0, CR or LF character is received. Note that no
bounds checking is performed on the input, and if a 0, CR, or LF is never received then this routine will
hang. As there is no bounds checking its possible to overwrite other variables, if less than 256 bytes
have been allocated for the InputList string.

SERIN will timeout after 0.5 seconds and return -1 and place 255 in the next item in the INlist before the
timeout. These routines are "bit-banged" by the processor, so the processor is consumed during these
operations. Interrupts are also disabled during each byte for these operations. The hardware UART0 can
be used see RXD0 or DEBUGIN . The timeout can be changed with SERINtimeout.

Baudrates can be up to 115.2 Kbaud for all pins on transmit. Receive rates to 57Kb

Example

#include <SERIAL.bas>

DIM Bytes(10) as STRING

' Read serial stream for 1 byte from pin 1 saving to MyByte, negative true
SERIN (1, 19200, 0, 1,Bytes)
PRINT HEX(Bytes)

#include <SERIAL.bas>

' In this case we are reading an open loop device
' that is continuously sending CR terminated strings on the serial line
' to ensure we read a complete line first sync up by looking for a CR character

DIM Astr(20) as STRING

io(15)=0 ' flag that we are sync'ing up
while 1
 serin (3,19200, 1, 1, Astr)
 if Astr(0) = 10 then exit
loop

io(15)=1 ' and that sync is complete
while 1
 serin (3,19200,1, 0, Astr)
 print Astr
loop

Differences from other BASICs

Page 306

 no equivalent in Visual BASIC
 simplified from PBASIC

See also

 SEROUT

Page 307

SEROUT

Syntax

#include <SERIAL.bas> ' source in /Program Files/Coridium/BASIClib

SUB SEROUT(pin, baud, posTrue, OUTcnt, BYREF OUTlist AS STRING)

Description

SEROUT sends a string of characters out on pin as an asynchronous data stream. baud and posTrue
set the parameters for the transmission. If OUTcnt is 0, then OUTlist will be sent until a 0 is encountered
(the 0 is not sent).

Baudrates can be up to 115.2 Kbaud for all pins

Example

#include <SERIAL.bas>

DIM Astr(20) as STRING

Astr = "123"
SEROUT (3, 1200, 0, 3, Astr) ' sends out 123 at 1.2Kbaud, negative true

Differences from other BASICs

 no equivalent in Visual BASIC
 simplified from PBASIC

See also

 SERIN

Page 308

bbTXD

Syntax

#include <SERIAL.bas> ' source in /Program Files/Coridium/BASIClib

SUB bbTXD(pin, ch)

Description

bbTXD (pin, ch) will send a single byte of data that is shifted out as an asynchronous serial stream on pin
. This function is similar to SEROUT, but is a more efficient implementation. The baudrate for the pin
should be set before using bbTXD, that is done using the bbBAUD(pin) array.

bbTXD will transmit 0-255 as a single byte of data with an added START bit and trailing STOP bit. As this
function is done by the CPU (often referred to as bit-banging, the program will stay at this instruction until
the shifting is completed. So the processor is consumed during these operations. Interrupts are also
disabled during each byte for these operations.

Example

#include <SERIAL.bas>

DIM Astr(10) as STRING
bbBAUD(2) = 19200 ' set the baud rate for serial I/O on pin 2

 '...

Astr = "Hello World"
GOSUB PRINTSTR

 '...

' Send a string of characters serially out pin 2
PRINTSTR:
 I=0
 WHILE Astr(I)
 bbTXD(2,Astr(I))
 I=I+1
 LOOP

 RETURN

Differences from other BASICs

 no equivalent in Visual BASIC
 SEROUT in PBASIC

See also

 bbBAUD
 bbRXD
 SEROUT

Page 309

Hardware Serial

Version 8.12 firmware adds support for all 4 UARTs in the SuperPRO and PROplus boards. Compiler
switches to the array-like assignments for BAUD, RXD and TXD.

UART0 and UART1 support is built into the BASIC compiler. UART1 and BAUDx support added in 7.13
firmware.

B

 BAUD

D

 DEBUGIN

P

 PRINT

R

 RXD

T

 TXD

 TXFREE

Page 310

BAUD(x)

Syntax

BAUD(channel) = rate ' built-in keyword

Description -- added in version 7.13

BAUD (0) will set the baudrate for the RXD0, TXD0 pins, that will be used by PRINT, DEBUGIN, RXD(0) or
TXD(0) functions.

BAUD(channel) will configure the pin to the UART function and set the baudrate for the corresponding
UART. On reset these pins are configured as general purpose IOs. Details on pin assignments in the
Hardware Info pages for the different boards.

Baudrates for the LPC21xx and LPC23xx based boards are 15000/(n*16) in Kbaud For instance, if you
call BAUD(0)=115200, the closest n is 8, and the resultant baudrate is 117.2 Kb, which is less than 2%
fast, which would normally be close enough. That can be improved by using the fractional divider.

Baudrates for the LPC17xx based boards are 25000/(n*16) in Kbaud. n is an integer.

All boards except the ARMexpress support fractional baud rate generation. This is not part of the built in
firmware, but can be engaged by writing directly to those registers. Details in theCoridium Forum or
the NXP User Manuals .

Example

BAUD(1) =19200 ' set the baud rate and enable serial I/O for UART1

BAUD(0) = 9600 ' set the baud rate for RXD0 and TXD0

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 TXD(x)
 RXD(x)

Page 311

http://www.coridiumcorp.com/forum/viewtopic.php?f =10&t=822&p=2749&hilit=fractional#p2749

RXD(x)

Syntax

FUNCTION RXD(channel) as INTEGER
Description

RXD(x) will return 0-255 if there was serial data present. or -1 (&HFFFFFFFF) if there is no serial
character available from SIN. The hardware UARTx is used, so the CPU is not tied up, and bytes are
buffered up to 256 bytes being received by an interrupt routine

SuperPRO or PROplus--

These devices support 4 UARTs, pin assignments in the Hardware Info

BASICchip or ARMmite--

Pin labeled RXD0 on the schematic, UART0 of the LPC2103. Data is always positive true.

Baudrates can be up to 115.2 Kbaud.

Example

BAUD(2)=9600 ' enable UART2 -- not all boards have UART2

' Wait for serial input on pin UART2
DO
 MyByte = RXD(2)
UNTIL MyByte >= 0

Differences from other BASICs

 no equivalent in Visual BASIC
 preferred alternate to SERIN of PBASIC

See also

 TXD(x)
 BAUD(x)

Page 312

TXD(x)

Syntax

TXD(channel) = character ' built-in keyword
Description

The data is transmitted on the SOUT pin on the ARMexpress, ARMexpressLITE. It is the serial line
connected to the USB port on the ARMmite, or the wireless serial port for the ARMmite Wireless. On the
ARMweb it is serial debug port. (labeled TXD0 on the schematic, UART0 of the LPC21xx)

TX interrupts are used so characters are placed into a buffer and sent to the UART hardware when the TX
FIFO or output register is empty (all charaters sent). That buffer size is 128 bytes for all but the PROplus
(64 bytes). If the user sends more bytes than this buffer, the program will stall until there is room in the
buffer.

SuperPRO or PROplus--

These devices support 4 UARTs, pin assignments in the Hardware Info. Access to UART0 and UART1
in all firmware versions, but access to all 4 UARTs requires firmware 8.14 or later.

Example

SUB PrintUART1 (Astr(100) as STRING)
 DIM I as INTEGER
 I=0
 WHILE Astr(I)
 TXD(1) = Astr(I)
 I=I+1
 LOOP
END SUB
'...

main:
BAUD(1)=19200 ' enable UART1

PrintUART1 ("Hello World") ' Send a string of characters serially out UART1

Differences from other BASICs

 no equivalent in Visual BASIC
 preferred alternate to SEROUT of PBASIC

See also

 BAUD(x)
 RXD(x)
 TXFREE(x)

Page 313

TXFREE(x)

Syntax

FUNCTION TXFREE(channel) as INTEGER ' built-in keyword

Description -- added in version 8.30

TXFREE(channel) will return the amount of free space in the TX buffer of channel in bytes.

Because the :PC11U37 uses USB for channel 0, it appears to be always empty.

Example

BAUD(1)=115200 ' always need to enable UART(channel) first

print TXFREE(1) ' show the amount of free space in TXD buffer

TXD(1)="a"
TXD(1)="b"
TXD(1)="c"
TXD(1)="d"

print TXFREE(1) ' should be less space available for UARTs without FIFOs

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 TXD(x)
 RXD(x)

Page 314

SHIFTIN, SHIFTOUT

Library

#include <SHIFT.bas>

S
 SHIFTIN
 SHIFTOUT

Interface

DIM listIN(MAXshiftARRAY) ' values to be shifted in
DIM listOUT(MAXshiftARRAY) ' values to be shifted out

DIM shiftCounts(MAXshiftARRAY) ' bit counts for each value (0 assumed to be 8 bits), 1-32 allowed

' cnt is the number of elements
SUB SHIFTOUT (OUTpin, CLKpin, LSBfirst, cnt)
SUB SHIFTIN (INpin, CLKpin, LSBfirst, cnt)

Description

LSBfirst selects the bit order for the SHIFT routines.

A #define is used to set clock mode #define SHIFTclkNEGATIVE will invert the normally low clock. To use
a normally high clock this #define must be placed before the #include <SHIFT.bas>

Another #define can be used to sample data before the clock, #define SHIFTpreSample. The default case is
to sample data after each clock.

SHIFTIN can be used for devices that are not covered by SPI, I2C or 1-Wire. Data is shifted in on INpin, and
a positive clock is sent on CLKpin for each bit.

While most other hardware functions use bytes, SHIFTIN is oriented for bit control. The shiftCounts defines
the number of bits that will be shifted in (1 - 32) for each corresponding element of the listIN array. If a
shiftCounts is 0, it is assumed to be 8. Data is shifted in at 300 Kbits/sec.

SHIFTOUT can be used for devices that are not covered by SPI, I2C or 1-Wire. Data is shifted out on OUTpin
, and a positive clock is sent on CLKpin for each bit.

While most other hardware functions use bytes, SHIFTOUT is oriented for bit control. The shiftCounts array
defines the number of bits that will be shifted out (1 - 32) for each corresponding element of the listOUT array.
If shiftCounts is 0, it is assumed to be 8 bits.

 Mode = 0 data is shifted out MSB first
 Mode = 1 data is shifted out LSB first

NOTE*** these shift modes are compatible with SHIFTIN, BUT not the same as PBASIC

Data is shifted out of the device at 300 Kbits/sec.

Example

Page 315

#include <SHIFT.bas>
 '...

' use SHIFTIN/OUT to control an SPI EN28J60 connected on pins 3,4 -- 6 as CS

listOUT(0) = 2
shiftCounts(0) = 3

listOUT(1) = &H1b
shiftCounts(1) = 5

listOUT(2) = y
shiftCounts(2) = 8

io(6)=0 ' used as CS
shiftout (3,4,1,3) ' set reg &H1B to y
io(6)=1

listOUT(0) = reg
shiftCounts(0) = 8

io(6)=0
shiftout (3,4,1,1) 'select the register
shiftin (5,4,0,1) 'and read it back
x = listIN(0)
io(6)=1

Here is an example for a device (93LC46) which is byte oriented except for the commands. So the
commands are sent with SHIFTOUT, and data transferred with SPIIN or SPIOUT. CS is manually controlled
in this example (it is also positive true).

#include <SHIFT.bas>
#include <SPI.bas>
 '...

DIM inbuf(20) as string
DIM outbuf(20) as string

' mixed SPI, SHIFT example for a 93LC46 connected to pins 11-14

IOI(14)=1 ' CS to 93LC46
listOUT(0) = &H260
shiftCounts(0) = 10
SHIFTOUT(12,13,0,1) ' write enable
IO(14)=0

listOUT(0) = &H280 ' count still 10
outbuf(0) = $41
IO(14)=1
SHIFTOUT(12,13,0,1) ' set write to address 0
SPIOUT (-1, 13, 12, 0, 1, outbuf) ' send a byte of data
IO(14)=0

wait(20) ' allow for write time

IO(14)=1

Page 316

listOUT(0) = &H300
SHIFTOUT(12,13,0,1) ' read addr 0
SPIIN (-1, 11, 13, 12, 0, -1, "", 10, inlist) ' read 10 bytes of data
IO(14)=0

Page 317

SHIFTIN

Syntax

#include <SHIFT.bas> ' source in /Program Files/Coridium/BASIClib

SUB SHIFTIN (INpin, CLKpin, LSBfirst, cnt)

Description

SHIFTIN can be used for devices that are not covered by SPI, I2C or 1-Wire. Data is shifted in on INpin,
and a positive clock is sent on CLKpin for each bit.

Data and shift counts are stored in 3 arrays defined in the #include file

 DIM listIN(MAXshiftARRAY) ' values to be shifted in
 DIM listOUT(MAXshiftARRAY) ' values to be shifted out

 DIM shiftCounts(MAXshiftARRAY)

While most other hardware functions use bytes, SHIFTIN is oriented for bit control. The shiftCounts
defines the number of bits that will be shifted in (1 - 32) for each element of the listOUT array. If a
shiftCounts is 0, it is assumed to be 8.

Data is shifted in at 300 Kbits/sec.

Example

#include <SHIFT.bas>
 '...

' use SHIFTIN/OUT to control an SPI EN28J60 connected on pins 3,4 -- 6 as CS

listOUT(0) = 2
shiftCounts(0) = 3

listOUT(1) = &H1b
shiftCounts(1) = 5

listOUT(2) = y
shiftCounts(2) = 8

io(6)=0 ' used asCS
shiftout (3,4,1,3) ' set reg &H1B to y
io(6)=1

listOUT(0) = reg
shiftCounts(0) = 8

io(6)=0
shiftout (3,4,1,1) 'select the register
shiftin (5,4,0,1) 'and read it back
x = listIN(0)
io(6)=1

Page 318

Differences from other BASICs

 no equivalent in Visual BASIC
 similar to PBASIC

See also

 SHIFTOUT
 Hardware SHIFT
 SPIIN

Page 319

SHIFTOUT

Syntax

#include <SHIFT.bas> ' source in /Program Files/Coridium/BASIClib

SUB SHIFTOUT (OUTpin, CLKpin, LSBfirst, cnt)

Description

SHIFTOUT can be used for devices that are not covered by SPI, I2C or 1-Wire. Data is shifted out on
OUTpin, and a positive clock is sent on CLKpin for each bit.

While most other hardware functions use bytes, SHIFTOUT is oriented for bit control. The
shiftCounts array defines the number of bits that will be shifted out (1 - 32) for each corresponding
element of the listOUT array. If shiftCounts is 0, it is assumed to be 8 bits.

 Mode = 0 data is shifted out MSB first
 Mode = 1 data is shifted out LSB first

NOTE*** these shift modes are compatible with SHIFTIN, BUT not the same as PBASIC

Data is shifted out of the device at 300 Kbits/sec.

Example

#include <SHIFT.bas>
#include <SPI.bas>
 '...

DIM inbuf(20) as string
DIM outbuf(20) as string

' mixed SPI, SHIFT example for a 93LC46 connected to pins 11-14

IO(14)=1 ' CS to 93LC46
listOUT(0) = &H260
shiftCounts(0) = 10
SHIFTOUT(12,13,0,1) ' write enable
IO(14)=0

listOUT(0) = &H280 ' count still 10
outbuf(0) = $41
IO(14)=1
SHIFTOUT(12,13,0,1) ' set write to address 0
SPIOUT (-1, 13, 12, 0, 1, outbuf) ' send a byte of data
IO(14)=0

wait(20) ' allow for write time

IO(14)=1
listOUT(0) = &H300
SHIFTOUT(12,13,0,1) ' read addr 0
SPIIN (-1, 11, 13, 12, 0, -1, "", 10, inbuf) ' read 10 bytes of data
IO(14)=0

Differences from other BASICs

Page 320

 none from Visual BASIC
 simplified from PBASIC

See also

 SHIFTIN
 Hardware SHIFT
 SPIIN

Page 321

SPI

Library

#include <SPI.bas>

S

 SPIBI

 SPIIN

 SPIOUT

Interface

optional #defines-
 SPIclkNEGATIVE
 SPIpreSample
 TERMINATE_ON_0_ONLY -- ignore CR,LF as special characters

SUB SPIIN (CSpin, INpin, CLKpin, OUTpin, LSBfirst, OUTcnt, BYREF OUTlist as STRING, INcnt, BYREF
INlist as STRING)

SUB SPIOUT (CSpin, CLKpin, OUTpin, LSBfirst, OUTcnt, BYREF OUTlist AS STRING)

SUB SPIBI (CSpin, INpin, CLKpin, OUTpin, LSBfirst, BIcnt, BYREF OUTlist as STRING, BYREF INlist as
STRING)

Description

These libraries are written for the ARM being the master, with possible multiple slaves selected by different
CS lines.

LSBfirst selects the bit order for the SPI routines.

A #define is used to set clock mode #define SPIclkNEGATIVE will invert the normally low clock. To use a
normally high clock this #define must be placed before the #include <SPI.bas>

Another #define can be used to sample data before the clock, #define SPIpreSample. The default case is to
sample data after each clock.

SPIIN supports the loosely defined serial protocol used by a variety of manufacturers. The desired device is
selected by asserting CSpin LOW. If there is no CSpin , the value should be set to -1.

In the simplest case, INpin is used to input data clocked by CLKpin, to fill the INlist. (OUTcnt will be 0 and
OUTlist empty)

In bi-directional cases, OUTcnt bytes of OUTlist will be output on OUTpin before reading the INlist. OUTcnt
may be -1 and OUTlist empty. If OUTcnt is 0, then OUTlist bytes will be sent until a value of 0 is found (the 0
will not be sent). An empty OUTlist can be represented by "".

It is also allowable to have INpin equal to OUTpin, in which case that pin will be driven for the OUTlist and
then converted to an input for INlist.

INlist will be filled with INcnt bytes. If INcnt is 0 then the INlist will be filled with bytes until a 0, CR or LF
character is received. Note that no bounds checking is performed on the input, and if a 0, CR, or LF is never

Page 322

received then this routine will hang.

Data is shifted in MSB first and each element of the InputList is filled with a byte of data. The LSBfirst can be
used to change the bit order.

Data is shifted in at 330 Kbits/sec

SPIOUT supports the loosely defined serial protocol used by a variety of manufacturers. The desired device
is selected by asserting CS_pin LOW. If there is no CS_pin, the value should be set to -1.

In the simplest case, out_pin is used to output data clocked by clk_pin, from the OutputList.

OutputList can contain a list of constants, variables, "constant-string" or stringame$ without a count. The
latter will send out bytes starting from stringname$(0) until a 0 byte is read. The 0 is not shifted out, if that is
required either a count should be specified so as to include the 0.

Data is shifted out MSB first and each element of the OutputList is treated as a byte. The LSBfirst can be
used to change the bit order.

Data is shifted out at 300 Kbits/sec

SPIBI supports the loosely defined serial protocol used by a variety of manufacturers. The desired device is
selected by asserting CS_pin LOW. If there is no CS_pin , the value should be set to -1.

SPIBI will shift out1, out2, out3 bytes out on out_pin while reading 3 or more bytes into the InputList from
in_pin. For each bit the clk_pin will be pulsed. Data is shifted in/out MSB first. The LSBfirst can be used to
change the bit order.

Data is shifted in/out at 220 Kbits/sec

Example

#include <SPI.bas>
,,,

DIM shortResponse(20) as string

 ' microMega FPU uses MSB first -- positive clock

shortResponse=
chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HF
F)+chr(&HFF)
 SPIOUT (-1,14,15, 0, 11, shortResponse) ' reset FPU
 WAIT (10)

 shortResponse= chr(&HF0)
 SPIOUT (-1,14,15, 0, 1, shortResponse) ' sync FPU
 save_time = TIMER
 while ((TIMER - save_time) < 15) ' wait 15 uSec
 loop
 SPIIN (-1,14,15, 0, 0,"", 1, shortResponse) ' get 1 byte status back

 if (shortResponse(0) <> &H5C) then
 print " No FPU found", status
 end
 endif
 print "FPU found"
 shortResponse= chr(&HF3)

Page 323

 SPIOUT (-1,14,15, 0, 1, shortResponse) ' get version
 INPUT (14) ' allow FPU to drive this bi-directional line
 while (IN(14)) ' wait for FPU to drive that line low
 loop
 shortResponse= chr(&HF2)
 SPIOUT (-1,14,15, 0, 1, shortResponse) ' get string
 save_time = TIMER
 while ((TIMER - save_time) < 15) ' wait 15 uSec
 loop
 SPIIN (-1,14,15, 0, 0,"", 0, shortResponse) ' get a 0 terminated string back

 print "version = "; shortResponse;

For an example of an SPI device that uses non-byte oriented command see SHIFTIN, SHIFTOUT example.

Page 324

SPIBI

Syntax

#include <SPI.bas> ' source in /Program Files/Coridium/BASIClib

SUB SPIBI (CSpin, INpin, CLKpin, OUTpin, LSBfirst, BIcnt, BYREF OUTlist as STRING, BYREF INlist as
STRING)

Description

SPIBI supports the loosely defined serial protocol used by a variety of manufacturers. The desired device
is selected by asserting CS_pin LOW. If there is no CS_pin , the value should be set to -1.

SPIBI will shift out1, out2, out3 bytes out on out_pin while reading 3 or more bytes into the InputList from
in_pin. For each bit the clk_pin will be pulsed. Data is shifted in/out MSB first. The LSBfirst can be used
to change the bit order.

Data is shifted in/out at 220 Kbits/sec

Example

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 SPIOUT
 SPI Support

Page 325

SPIIN

Syntax

#include <SPI.bas> ' source in /Program Files/Coridium/BASIClib

SUB SPIIN (CSpin, INpin, CLKpin, OUTpin, LSBfirst, OUTcnt, BYREF OUTlist as STRING, INcnt, BYREF
INlist as STRING)

Description

SPIIN supports the loosely defined serial protocol used by a variety of manufacturers. The desired device
is selected by asserting CSpin LOW. If there is no CSpin , the value should be set to -1.

In the simplest case, INpin is used to input data clocked by CLKpin, to fill the INlist. (OUTcnt will be 0
and OUTlist empty)

In bi-directional cases, OUTcnt bytes of OUTlist will be output on OUTpin before reading the INlist.
OUTcnt may be -1 and OUTlist empty. If OUTcnt is 0, then OUTlist bytes will be sent until a value of 0 is
found (the 0 will not be sent). An empty OUTlist can be represented by "".

It is also allowable to have INpin equal to OUTpin, in which case that pin will be driven for the OUTlist and
then converted to an input for INlist.

INlist will be filled with INcnt bytes. If INcnt is 0 then the INlist will be filled with bytes until a 0, CR or LF
character is received. Note that no bounds checking is performed on the input, and if a 0, CR, or LF is
never received then this routine will hang.

Data is shifted in MSB first and each element of the InputList is filled with a byte of data. The LSBfirst can
be used to change the bit order.

Data is shifted in at 330 Kbits/sec

Example

 #include <SPI.bas>

DIM Astr(20) as STRING

FUNCTION Fpu_ReadWord
 Fpu_ReadDelay
 Astr(0) = 0
 SPIIN(FpuCS, FpuIn, FpuClk, FpuOut, 0, 0, Astr, 2, Astr)
 return (Astr(0)<<8) + Astr(1)
END FUNCTION

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 SPIOUT
 SPI Support

Page 326

SPIOUT

Syntax

#include <SPI.bas> ' source in /Program Files/Coridium/BASIClib

SUB SPIOUT (CSpin, CLKpin, OUTpin, LSBfirst, OUTcnt, BYREF OUTlist AS STRING)

Description

SPIOUT supports the loosely defined serial protocol used by a variety of manufacturers. The desired
device is selected by asserting CS_pin LOW. If there is no CS_pin, the value should be set to -1.

In the simplest case, out_pin is used to output data clocked by clk_pin, from the OutputList.

OutputList can contain a list of constants, variables, "constant-string" or stringame without a count. The
latter will send out bytes starting from stringname(0) until a 0 byte is read. The 0 is not shifted out, if that
is required either a count should be specified so as to include the 0.

Data is shifted out MSB first and each element of the OutputList is treated as a byte. The LSBfirst can be
used to change the bit order.

Data is shifted out at 300 Kbits/sec

Example

#include <SPI.bas>

DIM Astr(20) as STRING

SUB Fpu_Write(bval1)
 Astr(0) = bval1
 SPIOUT(FpuCS, FpuClk, FpuOut, 0, 1, Astr)
END SUB

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 SPIIN
 SPI Support

Page 327

Interrupts (version 7.30 and later)

Pin Control Functions
 ADDRESSOF
 INTERRUPT
 INTERRUPT SUB

Page 328

ADDRESSOF

Syntax

ADDRESSOF variable_name

 or

ADDRESSOF subroutine_name

Description

ADDRESSOF will return the address of a variable or subroutine.

Example

#include "LPC11xx.bas"

dim e3 as integer
dim s3 as integer

INTERRUPT SUB TIMER1IRQ
 T1_IR = 1 ' Clear interrupt
 e3 = e3 + 1
ENDSUB

SUB ON_TIMER (msec, dothis)
 TIMER1_ISR = dothis + 1 'set vector in VIC -- the +1 for Thumb operation
 VICIntEnable = VICIntEnable or (1<<19) 'Enable interrupt
 T1_MR0 = msec-1 ' set up match number of ms
 T1_MCR = 3 ' Interrupt and Reset on MR0
 T1_IR = 1 ' clear interrupt
 T1_TC = 0 ' clear timer counter
 T1_TCR = 1 ' TIMER1 Enable
ENDSUB

main:
 print "TIMER1 Interrupt Test"
 print "TIMER1 will interrupt every 2 seconds and print a dot"

 ON_TIMER(2000, ADDRESSOF TIMER1IRQ)
 s3 = 0
 e3 = 0

 WHILE (1)
 if s3 <> e3 then
 s3 = e3
 print ".";
 endif
 LOOP

Cortex M series parts are running in Thumb code, which uses 16 bit instructions. Addresses used for the PC
(program counter) indicate Thumb mode by setting the LSB of the address. That is why you see the vectors
such as

 TIMER1_ISR = dothis + 1 ' set vector in the VIC

Page 329

If you do not set this bit,the program will crash in the LPC11xx, LPC17xx parts. Do not set it for LPC21xx
parts.

Differences from other BASICs

 similar to VB
 no equivalent in PBASIC

See also

 ADDRESSOF

Page 330

INTERRUPT

Syntax

INTERRUPT (expression)
Description

INTERRUPT will disable interrupts if expression is 0. And it will enable interrupts if expression is
non-zero. The default case is to have interrupts enabled.

Use this routine with caution, such as generating fixed time signals, or doing synchronous input. Do NOT
disable interrupts around large sections of the program. Serial input will stop functioning and characters
may be lost if interrupts are off for too long.

On the Cortex parts with firmware after 8.28, if interrupts are off, the TIMER will not update the upper 16
bits (meaning it can't count beyond 65 microseconds). For timing with interrupts off, use WAIT_MICRO
instead. Or you can turn on just the interrupt used by TIMER with --

INTERRUPT(0)
ST_CTRL OR= 2 ' enable the SysTick interrupt

Example

' read a synchronous byte from a device with ready on pin 0, clock pin 1 and data on pin 2

FUNCTION ReadBit
 WHILE IN(1)=0 ' wait for clock to go high
 LOOP
 RETURN IN(2) AND 1
END FUNCTION

 '...

WHILE IN(0) ' wait for ready signal
LOOP

INTERRUPT (0)
BIT0 = ReadBit
BIT1 = ReadBit
BIT2 = ReadBit
BIT3 = ReadBit
BIT4 = ReadBit
BIT5 = ReadBit
BIT6 = ReadBit
BIT7 = ReadBit
INTERRUPT (1)

VALUE = BIT0 + (BIT1<<1) + (BIT2<<2)+ (BIT3<<3)+ (BIT4<<4)+(BIT5<<5)+ (BIT6<<6)+ (BIT7<<7)

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 ON

Page 331

INTERRUPT SUB

Syntax

INTERRUPT SUB name
Description

INTERRUPT SUB indicates to the compiler this SUB will be used as an interrupt routine.

The address of the interrupt sub can be loaded into the interrupt hardware using the ADDRESSOF
operator.

This requires firmware 7.30 or later and compiler version 7.44 or later.

This will be the way interrupts will be supported on Cortex M0,M3 parts, the ON construct will be
maintained for backward compatibility, but will not be expanded.

There are example programs for interrupts in the \Program Files (x86)\Coridium\Examples directory .
These examples cover TIMER, GPIO, RITIMER and EINT interrupts.

PRINT statements are useful for debugging. However PRINT statements should NOT be used inside
INTERRUPT routines, as the PRINT routine is not re-entrant, in other words a PRINT inside an interrupt
will interfere with a PRINT or many string expressions outside the interrupt. You can use it just to see if
the INTERRUPT occurs, but beyond that expect it to cause problems in your program.

Example

' ARM7 -- LPC21xx of ARMmite, PRO, ARMweb
' Test EINT0 on PWM02
' For ARMmite connect PWM02 to P17
' The program will poll for a "0" or "1" on RXD0
' Receiving a "0" will clear output P17, a "1" will set the output
' triggering an EINT0 interrupt

#define LPC2103

#include "LPC21xx.bas"

dim e0 as integer
dim s0 as integer
dim rx as integer

INTERRUPT SUB EINT0IRQ
 SCB_EXTINT = 1 ' Clear interrupt
 VICVectAddr = 0 ' Acknowledge Interrupt
 e0 = e0 + 1
ENDSUB

SUB ON_EINT0(rise_edge, dothis)
 ' Setup MUST be done before enabling the interrupt
 PCB_PINSEL1 = PCB_PINSEL1 or psfEINT0 ' select pin function
 SCB_EXTINT = 1 ' clear interrupt
 SCB_EXTMODE = SCB_EXTMODE or 1 ' enable edge mode

 if rise_edge

Page 332

 SCB_EXTPOLAR = SCB_EXTPOLAR or 1 ' trigger on rise edge
 else
 SCB_EXTPOLAR = SCB_EXTPOLAR & &HFFFFFFFE ' trigger on fall edge (default)
 endif

 VICVectAddr4 = dothis ' set function of VIC 4
 VICVectCntl4 = &H2e ' use it for EINT0 Interrupt:
 VICIntEnable = &H4000 ' enable EINT0 Interrupt:

 VICVectAddr = 0 ' Acknowledge all Interrupts
ENDSUB

main:

print "EINT0 Interrupt Test"
print "Enter 0 to clear EINT0 input, 1 to set input"

ON_EINT0(1, ADDRESSOF EINT0IRQ) 'set up for rising edge

e0 = 0
s0 = 0
rx = 0
OUTPUT (12)
OUT(12) = 0

WHILE (1)
 rx = RXD0
 if rx > 0 then
 TXD0 = rx
 if rx = "0" then OUT(12) = 0
 if rx = "1" then OUT(12) = 1
 endif

 if s0 <> e0 then
 s0 = e0
 print "Received EINT0 "
 endif
LOOP

' Cortex M3 example -- PROplus SuperPRO

' Test EINT0 on C10 (P2.10)
' For ARMmite connect C10 to P18
' The program will poll for a "0" or "1" on RXD0
' Receiving a "0" will clear output P18, a "1" will set the output
' triggering an EINT0 interrupt

#include "LPC17xx.bas"

dim e0 as integer
dim s0 as integer
dim rx as integer

INTERRUPT SUB EINT0IRQ
 SCB_EXTINT = 1 ' Clear interrupt
 e0 = e0 + 1

Page 333

ENDSUB

SUB ON_EINT0(rise_edge, dothis)
 PCB_PINSEL4 = &H00100000 ' EINT0 on P2.10
 SCB_EXTMODE = SCB_EXTMODE or 1 ' Enable edge mode
 SCB_EXTINT = 1 ' Clear interrupt
 if rise_edge
 SCB_EXTPOLAR = SCB_EXTPOLAR or 1 ' trigger on rise edge
 else
 SCB_EXTPOLAR = SCB_EXTPOLAR & &HFFFFFFFE ' trigger on fall edge (default)
 endif
 EINT0_ISR = dothis or 1 'set vector in the VIC
 VICIntEnable = VICIntEnable or (1<<18) '&H00040000 'Enable interrupt
ENDSUB

main:
 print "EINT0 Interrupt Test"
 print "Enter 0 to clear EINT0 input, 1 to set input"

 ON_EINT0(0, ADDRESSOF EINT0IRQ) 'set up for rising edge

 e0 = 0
 s0 = 0
 rx = 0
 OUTPUT(18)
 OUT(18) = 0

 WHILE (1)
 rx = RXD0
 if rx > 0 then
 TXD0 = rx
 if rx = "0" then OUT(18) = 0
 if rx = "1" then OUT(18) = 1
 endif

 if s0 <> e0 then
 s0 = e0
 print "Received EINT0 "
 endif

 LOOP

Cortex M series parts are running in Thumb code, which uses 16 bit instructions. Addresses used for the PC
(program counter) indicate Thumb mode by setting the LSB of the address. That is why you see the vectors
such as

 EINT0_ISR = dothis or 1 'set vector in the VIC

If you do not set this bit,the program will crash in the LPC11xx, LPC17xx parts. Do not set it for LPC21xx
parts.

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 ON

Page 334

SLEEP

Syntax

SLEEP

Description

Execute a WFI instruction (Wait For Interrupt) which puts the CPU into a low power state. That state
requires an interupt to end it.

Added to version 8.20 of the ARMbasic compiler. The RTC.bas library had a SUBroutine named SLEEP
that has been renamed IDLE.

This function is not available on LPC2103 or LPC2138 parts. (ARMmite, ARMweb, ARMexpress).

Example

#include "LPC17xx.bas"

INTERRUPT SUB TIMER1IRQ
 T1_IR = 1 ' Clear interrupt
ENDSUB

SUB ON_TIMER (msec, dothis)
 TIMER1_ISR = dothis + 1 'set function of VIC -- need the +1 for Thumb operation
 VICIntEnable or= (1<<2) 'Enable interrupt
 T1_MR0 = msec-1 ' set up match number of ms
 T1_MCR = 3 ' Interrupt and Reset on MR0
 T1_IR = 1 ' clear interrupt
 T1_TC = 0 ' clear timer counter
 T1_TCR = 1 ' TIMER1 Enable
ENDSUB

main:
 ON_TIMER(5000, ADDRESSOF TIMER1IRQ)

 print "going to sleep"
 wait(500) ' if we don't the messages don't ever come out until we are wake up

 SLEEP

 print "we woke up"

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 WAIT

Page 335

Pin Control Functions

IO(x) is the simplest way to access the digital pins. Read IO(x) and the pin becomes or stays an input and
the value is returned. Write to IO(x) and the pin becomes or stays and output and is set low when 0, or high
for all other values.

For firmware after 8.11, IO(x) accesses the upper ports (P1 through P4), in groups of 32, IO(32) through
IO(63) access P1(0) through P1(31) and so on.

Pin Control Functions
 AD
 BYTEBUS -- obsolete
 DIR
 HIGH
 IN
 INPUT
 IO
 LOW
 OUT
 OUTPUT
 Port P0..P4

Page 336

Overview

Description

The original BASIC used the IO(x) keyword to control pins. It was simple and handled both reading and
writing pins. If the IO is on the left hand side of an = sign, then the pin is made into an output and the pin
is set high when the expression on the right hand side of the = is not 0, or set low when the right hand
side is 0. When the IO is on the right hand side of an = sign, then the pin is converted to an input and the
value of the pin is read. IO(x) also controls pin direction (input vs. output). Reading the pin turns it to an
input, and you can always ignore the data.

When PBASIC support was added for the ARMexpress, the IN, OUT, INPUT, OUTPUT, HIGH, LOW and
DIR keywords were added. Yes a lot of complexity, but the intention was to be compatible with PBASIC.
These keywords are still available and will remain so. IN will always read the state of the pin, whether
the pin is configured as an input or output. OUT will set the pin only if the pin has been configured as an
output. Both IN and OUT are faster than IO, HIGH and LOW keywords that also configure the pin
direction.

It's unfortunate that INPUT was used, as for most early BASICs this was used to get user input for a
program, a function now handled by DEBUGIN. For those who'd like to use INPUT for that you could
always do

 #define INPUT DEBUGIN

To match the BASIC Stamp, pins were mapped to port bits that did not correspond to the NXP bit
assignments. This was also done for the ARMmite and original PRO board. But with all future boards,
the NXP bit assignment will be used.

With the use by NXP of multiple 32 bit ports for IO pins, it was necessary to expand controls. P0(x)
through P5(x) keywords have been added. The compiler optimizes code for these keywords, and
generates inline code to increase performance. Because this code is inline it will be faster, but also
larger.

With version 7.50 for ARM7 and 8.12 for ARM Cortex parts, the original keywords IO, IN OUT, INPUT,
OUTPUT, DIR, HIGH and LOW have been expanded to handle multiple ports, by defining bits 32 through
63 as port P1, 64 through 95 as port P2... These keywords call built-in functions. So the code for these
will be smaller, but also slower.

If you want to control or read multiple pins, you can always access the FIOxPIN register directly using
pointers. Details on how the pins work are in the NXP User Manual for the appropriate part.

See also

 OUT
 IN
 Port P0..P4
 @ ' dump memory

Page 337

Pin Mapping

Description

On the LPC2103 (ARMmite, ARMexpress LITE and ARMmite PRO there is only one 32 bit IO port. The
first product was the ARMexpress which also has a single 32 bit IO port. As the ARMexpress is footprint
compatible with the Parallax BASIC stamp, the assignment of IOs was done to match that BASIC
stamp. As some ports were used for special functions, like the debug serial port, IOs 0 through 15 were
not available. So that assignment does not match the bit assignment by NXP. To accomplish this the
pins were remapped using an array in firmware, so that a call like IO(4) on the ARMmite will lookup 4 in
an array which corresponds to P0(20)

On the LPC2138 in the ARMweb and DINkit, all pins correspond to the NXP assigned bit mapping. , There
are 10 additional lines in a second port, which can be accessed using the ARMbasic P1(x) keyword.
They may also be accessed with IO, DIR, IN, OUT... with firmware version 7.50 and later as IO(x) where
x= 48 to 55 corresponding to P1(16) to P1(23)

On the LPC175x of the SuperPRO and PROplus there are 4 ports that have a subset of the 32 pins
connected to the outside. These pins are accessed by P0(x) through P4(x) to read or write the state. As
of firmware version 8.12, the IO, IN, OUT, DIR keywords are also used, with indexes 0-31 for P0, 32-63 for
P1, 64-95 for P2 and 128-159 for P4.

ARMbasic provides mechanisms to control the direction and state of these pins with IO, the direction with
DIR, and the state with OUT, or read with IO or IN.

These correspond to the low level registers defined by NXP FIOxDIR register, FIOxSET and FIOxCLR
registers. The state of the pin can be read at anytime with the FIOxPIN register. Each of these registers
consists of 32 bits each bit corresponding to a pin. When a bit in the FIOxDIR register is 1, then that pin
is an output. The state of that output can be controlled by writing a 1 to that bit of the FIOxSET register
to make it high or write 1 to that pin of the FIOxCLR register to make it low. Writing 0s to the FIOxSET
and FIOxCLR registers do not affect those pins.

Example

On the BASICchip, BASICboard, PROstart, PROplus, SuperPRO there is no re-mapping of pins, so the
bit positions match the NXP assignments.

On the ARMmite, the pin re-mapping can be viewed as code like the following:

#include <LPC21xx.bas>

CONST ReMap={9,8,30,21,20,29,4,5,6,7,13,19,18,17,16,15}

#define OUTPUT(x) FIO0DIR = FIO0DIR or (1 << ReMap(x))
#define INPUT(x) FIO0DIR = FIO0DIR and not (1 << ReMap(x))
#define IN(x) P0(ReMap(x))
#define OUT(x) P0(ReMap(x))
#define HIGH(x) P0(ReMap(x))= 1
#define LOW(x) P0(ReMap(x)) = 0

On the PRO, the pin re-mapping can be viewed as code like the following:

#include <LPC21xx.bas>

CONST ReMap={9,8,27,19,28,21,5,29,30,16,7,13,4,6,20,15}

Page 338

#define OUTPUT(x) FIO0DIR = FIO0DIR or (1 << ReMap(x))
#define INPUT(x) FIO0DIR = FIO0DIR and not (1 << ReMap(x))
#define IN(x) P0(ReMap(x))
#define OUT(x) P0(ReMap(x))
#define HIGH(x) P0(ReMap(x))= 1
#define LOW(x) P0(ReMap(x)) = 0

See also

 OUT
 IN
 Port P0..P4
 @ ' dump memory

Page 339

AD

Syntax

FUNCTION AD (expression) AS INTEGER

Description

AD will return 0..65472 that corresponds to the voltage on the pin corresponding to expression . The value
returned will have the top 10 bits of significance followed by bits 5..0 will be 0. 0 would be read for 0V and
65472 for 3.3V.

An analog conversion on pin expression is performed when this built-in FUNCTION is called. This process
takes less than 6 usec.

Dual Use AD pins
On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user
must individually specify a control direction using INPUT(x), OUTPUT(x), DIR(x), or IO(x) commands. After
that they will remain digital IOs until the next reset or power up.

BASICchip

AD pins are configured as ADs. To make them to IOs, the IOCON register needs to be written which is
done when you access the corresponding IO(x)

For BASICchip firmware versions before 8.28, to convert from AD to digital IO the following code must be
used

#include <LPC11xx.bas>

IOCON_R_PIO0_11 = &H91 ' convert AD(0) to digital input or output
IOCON_R_PIO1_0 = &H91 'AD(1)
IOCON_R_PIO1_1 = &H91 'AD(2)
IOCON_R_PIO1_2 = &H91 'AD(3)
IOCON_SWDIO_PIO1_3 = &H90 'AD(4)
IOCON_PIO1_4 = &H90 'AD(5)

for firmware versions after 8.28 you can convert to digital IOs by access using IO for either input or output

 x = IO(11) ' make AD(0) an IO
 x = IO(32) ' make AD(1) an IO
 x = IO(33) ' make AD(2) an IO
 x = IO(34) ' make AD(3) an IO
 x = IO(35) ' make AD(4) an IO
 x = IO(36) ' make AD(5) an IO

SuperPRO and PROplus version

The LPC17xx series have a 12 bit converter, so the top 12 bits of the 16 bit value are returned by AD.
Version 8.14 of the firmware allows the AD pins to be changed to digital pins using IO(x), INPUT(x),
DIR(x) and OUTPUT(x) commands. AD(6) and AD(7) are on shared pins with RXD(0) and TXD(0), and to
use those the PINSEL registers have to be re-programmed.

ARMmite and PRO version

Eight 10-bit ADs are available.

ARMweb

Page 340

AD pins are configured as ADs. To return them to IOs, the PINSEL register needs to be written (details in
the NXP LPC2138 User Manual)

 PINSEL1 AND= &HC003FFFF ' return ADs to IOs

ARMexpress LITE version

The ARMexpress LITE supports up to 6 channels of AD converters.

On the ARMexpress LITE and ARMweb these pins are configured as digital IOs at reset, but will be
switched to AD operation when AD(x) is read.

 AD(0) IO(7)
 AD(1) IO(10)
 AD(2) IO(8)
 AD(3) not available
 AD(4) not available
 AD(5) IO(9)
 AD(6) IO(11)

 AD(7) IO(12)

Example

voltage = AD (0) ' this will read the voltage on pin 0

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 IO
 DIR
 OUTPUT

Page 341

BYTEBUS (ARMweb only) -- OBSOLETE, use P1(pin)

To read more than 1 bit at a time, the FIO1PIN register can be read directly.

#include <LPC21xx> ' or <LPC17xx> for SuperPRO / PROplus

x = FIO0PIN ' read the 32 bits of port 0

y = FIO1PIN ' read the 32 bits of port 1 (only 10 are connected externally on the ARMweb)

Page 342

DAC

Syntax

DACsetup()

DACout(expression)

Description

Control of the DAC is done by writing directly to the registers. Details can be found in the User manual of
the appropriate part, links in the Hardware Section .

Rather than having built in functions in BASIC, this will be done by subroutines . Samples of those
subroutines are below

Example

On the SuperPRO:

#define PCB_PINSEL1 *(&H4002C004)
#define PCB_PINMODE1 *(&H4002C044)

#define DACR *(&H4008C000) ' or use #include <LPC17xx.bas>

sub DACsetup
 PCB_PINSEL1 = PCB_PINSEL1 and (not (3<<20)) or (2<<20) ' enable DAC output
 PCB_PINMODE1 = PCB_PINMODE1 or (2<<20) ' disable pull-ups
endsub

sub DACout(value)
 DACR = value << 6
endsub

main:
DACsetup

for i= 0 to 1023
 DACout(i)
 wait(10)
 next i

On the ARMweb or DINkit:

#define PCB_PINSEL1 *(&HE002C004)

#define DACR *(&HE006C000) ' or use #include <LPC21xx.bas>

sub DACsetup
 PCB_PINSEL1 = PCB_PINSEL1 and (not (3<<18)) or (2<<18) ' enable DAC output
endsub

sub DACout(value)
 DACR = value << 6
endsub

Page 343

main:
DACsetup

for i= 0 to 1023
 DACout(i)
 wait(10)
 next i

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 OUT
 IN
 @ ' dump memory

Page 344

DIR

Syntax

DIR (expression)
Description

The DIR keyword is for compatibility with PBASIC, and to support multiple ports on newer ARM devices.

DIR (expression) can be used to set or read the direction of the pins. If DIR (expression) value is 0 then
that pin is an input, otherwise for other values the pin is an output.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or
power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT(x), OUTPUT(x), DIR(x), or IO(x) commands. After
that they will remain digital IOs until the next reset or power up.

For the ARMmite, PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the pin
numbers shown in the Hardware Section. The numbering was assigned by physical location on the
board. So DIR, HIGH, IN, INPUT, IO, LOW, OUT and OUTPUT use these physical pin assignments. But
P0(pin) will use the bit assigned by NXP. Going forward new board designs will maintain the bit
assignment from NXP for all keywords.

For the ARMweb, DINkit, SuperPRO, PROplus and PROstart these pin numbers correspond only to the
Port 0 assigned by NXP, for instance DIR(11) corresponds to P0(11)

With version 8.11 of the firmware, ports beyond port 0, can be accessed as 32-63 for port 1, 64-95 for port
2, and so on.

As of version 8.25-SuperPRO and 8.26-BASICchip of the firmware, using INPUT will also convert AD pins
to digital function. To switch back you would need to program the PINSEL register manually (see the
NXP User Manual).

Example

DIR(4) = 0 ' Set pin 4 as an input

DIR(12) = 1 ' Set pin 12 as an output

On the extended ports for the SuperPRO DIR BASIC style use the following

DIR(64+10) = 1 ' makes P2(10) an output

while 1
 x=x+1
 P2(10) = x and 1 ' blinky for the SuperPRO and PROplus
 wait(500)
loop

Differences from other BASICs

 no equivalent in Visual BASIC
 equivalent to DIR0..15 in PBASIC

See also

 INPUT
 OUTPUT

Page 345

HIGH

Syntax

HIGH (expression)
Description

 **** kept for PBASIC compatibility, IO(x)=1 is preferred *****

HIGH will set the pin corresponding to expression to a positive value (3.3V) and then set it to an output.

HIGH and LOW have been added for PBASIC compatibility.

For the ARMmite, PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the pin
numbers shown in the Hardware Section. The numbering was assigned by physical location on the
board. So DIR, HIGH, IN, INPUT, IO, LOW, OUT and OUTPUT use these physical pin assignments. But
P0(pin) will use the bit assigned by NXP. Going forward new board designs will maintain the bit
assignment from NXP for all keywords.

For the ARMweb, DINkit, SuperPRO, PROplus and PROstart these pin numbers correspond only to the
Port 0 assigned by NXP, for instance DIR (3) corresponds to P0(3)

With version 8.11 of the firmware, ports beyond port 0, can be accessed as 32-63 for port 1, 64-95 for
port 2, and so on. Or you may use the P1 .. P4 commands .

Example

SUB DIRS (x) ' similar to PBASIC keyword
 DIM i AS INTEGER

 FOR i = 0 to 15
 if x and (1 << i) then OUTPUT(i) else INPUT(i)
 NEXT i
END SUB

main:

DIRS (&H00FF) ' set pins 0 to 7 to output

FOR I=0 TO 7
 WAIT (1000)
 HIGH(I) ' set each pin HIGH one after the other every second
NEXT I

Differences from other BASICs

 no equivalent in Visual BASIC
 none from PBASIC

See also

 LOW

Page 346

IN

Syntax

IN (expression)
Description

When reading from IN (expression), -1 or 0 will be returned corresponding to the voltage level on the pin
numbered expression. Why -1 and 0? The main reason is that operations of operators like NOT are
assumed to be bit-wise until there is a Boolean operation in the expression, and NOT 0 is equal to -1.

This directive does not change the input/output configuration of the pin.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or
power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT(x), OUTPUT(x), DIR(x), or IO(x) commands. After
that they will remain digital IOs until the next reset or power up.

For the ARMmite, PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the pin
numbers shown in the Hardware Section. The numbering was assigned by physical location on the
board. So DIR, HIGH, IN, INPUT, IO, LOW, OUT and OUTPUT use these physical pin assignments. But
P0(pin) will use the bit assigned by NXP. Going forward new board designs will maintain the bit
assignment from NXP for all keywords.

For the ARMweb, DINkit, SuperPRO, PROplus and PROstart these pin numbers correspond only to the
Port 0 assigned by NXP, for instance DIR(3) corresponds to P0(3)

With version 8.11 of the firmware, ports beyond port 0, can be accessed as 32-63 for port 1, 64-95 for port
2, and so on. Or you may use the P1 .. P4 commands .

Example

' Set pin 9 as an input
INPUT (9)

' Assume an external device has driven pin 9 high

PRINT "The current value of Input pin 9 is "; IN(9) AND 1

The current value of Input pins is 1

Differences from other BASICs

 no equivalent in Visual BASIC
 equivalent to IN0..15 PBASIC

See also

 OUT
 IO

Page 347

INPUT

Syntax

INPUT (expression)
Description

INPUT will set the pin corresponding to expression to an input.

INPUT was added for PBASIC compatibility, same function as DIR(x)= 0.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or
power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT(x), OUTPUT(x), DIR(x), or IO(x) commands. After that
they will remain digital IOs until the next reset or power up.

Making a pin an INPUT will also tri-state that pin.

For the ARMmite, PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the pin
numbers shown in the Hardware Section. The numbering was assigned by physical location on the
board. So DIR, HIGH, IN, INPUT, IO, LOW, OUT and OUTPUT use these physical pin assignments. But
P0(pin) will use the bit assigned by NXP. Going forward new board designs will maintain the bit
assignment from NXP for all keywords.

For the ARMweb, DINkit, SuperPRO, PROplus and PROstart these pin numbers correspond only to the
Port 0 assigned by NXP, for instance DIR(7) corresponds to P0(7)

With version 8.11 of the firmware, ports beyond port 0, can be accessed as 32-63 for port 1, 64-95 for port
2, and so on. Or you may access the FIOxDIR register directly.

As of version 8.25-SuperPRO and 8.26-BASICchip of the firmware, using INPUT will also convert AD pins
to digital function.

Example

INPUT (0) ' this will make pin 0 an input

On the extended ports for the SuperPRO INPUT/OUTPUT BASIC style use the

following

OUTPUT(64+10) ' makes P2(10) an output

while 1
 x=x+1
 P2(10) = x and 1 ' blinky for the SuperPRO and PROplus
 wait(500)
loop

Differences from other BASICs

 INPUT gets a value from the user in some BASICs, in ARMbasic get a value from the debug
serial port with DEBUGIN

 none from PBASIC
See also

 DIR
 OUTPUT

Page 348

 DEBUGIN

Page 349

IO

Syntax

IO (expression)
Description

IO is the simple way to access or control the pins. When IO (expression) is read or on the right hand
side of the = sign , the pin corresponding to expression is converted to an input and the value on that pin
is read.

When assigning a value to IO(expression), or on the left hand side of the = sign, then pin expression is
converted to an output and the logic value is written to the pin, 0 writes a low level any other value sets
the pin high. When read IO returns a 0 or -1. Why -1 and 0? The main reason is that operations of
operators like NOT are assumed to be bit-wise until there is a Boolean operation in the expression, and
NOT 0 is equal to -1. When setting a pin state with IO(x) = 0 then the pin becomes low, any other value
and the pin becomes high, so IO(x) =1 and IO(x) = -1 both set the pin high.

Using IO simplifies pins that are being used as both inputs and outputs. As it also sets direction it will be
slower than IN, OUT, or Px(y)

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or
power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT(x), OUTPUT(x), DIR(x), or IO(x) commands. After
that they will remain digital IOs until the next reset or power up.

For the ARMmite, PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the pin
numbers shown in the Hardware Section. The numbering was assigned by physical location on the
board. So DIR, HIGH, IN, INPUT, IO, LOW, OUT and OUTPUT use these physical pin assignments. But
P0(pin) will use the bit assigned by NXP. Going forward new board designs will maintain the bit
assignment from NXP for all keywords.

For the ARMweb, DINkit, SuperPRO, PROplus and PROstart these pin numbers correspond only to the
Port 0 assigned by NXP, for instance DIR(12) corresponds to P0(12)

With version 7.52/8.12 of the firmware, ports beyond port 0, can be accessed as 32-63 for port 1, 64-95
for port 2, and so on. Or you may use the P1 .. P4 commands .

Example

' Set pin 9 as an output and drive it high
IO(9) = 1

IO(9) = NOT IN(9) ' invert pin DO NOT USE IO(9) as that would be ambiguous for controlling the
direction of the pin

' Set pin 8 as an input and reads its value
x = IO(8)

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 OUT
 IN

Page 350

LOW

Syntax

LOW (expression)
Description

 **** kept for PBASIC compatibility IO(x) = 0 is preferred *****

LOW will set the pin corresponding to expression to a low value (0V) and then set it to an output.

HIGH and LOW have been added for PBASIC compatibility.

For the ARMmite, PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the pin
numbers shown in the Hardware Section. The numbering was assigned by physical location on the
board. So DIR, HIGH, IN, INPUT, IO, LOW, OUT and OUTPUT use these physical pin assignments. But
P0(pin) will use the bit assigned by NXP. Going forward new board designs will maintain the bit
assignment from NXP for all keywords.

For the ARMweb, DINkit, SuperPRO, PROplus and PROstart these pin numbers correspond only to the
Port 0 assigned by NXP, for instance DIR(13) corresponds to P0(13)

With version 8.11 of the firmware, ports beyond port 0, can be accessed as 32-63 for port 1, 64-95 for port
2, and so on. Or you may use the P1 .. P4 commands .

Example

SUB OUTS (x) ' similar to PBASIC keyword
 DIM i AS INTEGER

 FOR i = 0 to 15
 OUT(i) = x and (1 << i)
 NEXT i
END SUB

SUB DIRS (x) ' similar to PBASIC keyword
 DIM i AS INTEGER

 FOR i = 0 to 15
 DIR(i) = x and (1 << i)
 NEXT i
END SUB

main:

DIRS (&H00FF) ' set pins 0 to 7 to output
OUTS (255) ' and then set them high or to 3.3 V

FOR I=0 TO 7
 WAIT (1000)
 LOW (I) ' set each pin LOW one after the other every second
NEXT I

Differences from other BASICs

 no equivalent in Visual BASIC

Page 351

 none from PBASIC
See also

 HIGH
 IO

Page 352

OUT

Syntax

OUT (expression)
Description

When writing to OUT (expression), the pin corresponding to expression will be set a voltage level
corresponding to TRUE or FALSE, non-zero or 0. When setting a pin state with OUT(x) = 0 then the pin
becomes low, any other value and the pin becomes high, so OUT(x) =1 and OUT(x) = -1 both set the pin
high.

The OUT directive does not change the input/output configuration of the pin. Following reset all pins are
inputs, before an OUT () will have an effect on a pin, that pin must be made an output using an OUTPUT
command. The reason for this is to make OUT faster, if the pin direction were changed each OUT, then
the speed of one OUT to the next would be slower.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or
power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT(x), OUTPUT(x), DIR(x), or IO(x) commands. After
that they will remain digital IOs until the next reset or power up.

For the ARMmite, PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the pin
numbers shown in the Hardware Section. The numbering was assigned by physical location on the
board. So DIR, HIGH, IN, INPUT, IO, LOW, OUT and OUTPUT use these physical pin assignments. But
P0(pin) will use the bit assigned by NXP. Going forward new board designs will maintain the bit
assignment from NXP for all keywords.

For the ARMweb, DINkit, SuperPRO, PROplus and PROstart these pin numbers correspond only to the
Port 0 assigned by NXP, for instance DIR(10) corresponds to P0(10)

With version 8.11 of the firmware, ports beyond port 0, can be accessed as 32-63 for port 1, 64-95 for port
2, and so on. Or you may use the P1 .. P4 commands .

Example

' Set pin 9 as an output
OUTPUT (9)

' Drive pin 9 high
OUT(9) = 1

PRINT "The current value of Output pin 9 is "; OUT(9)

The current value of Output pins is 1

Differences from other BASICs

 no equivalent in Visual BASIC
 equivalent to OUT0..15 in PBASIC

See also

 IN
 IO

Page 353

OUTPUT

Syntax

OUTPUT (expression)
Description

OUTPUT will set the pin corresponding to expression to an output.

OUTPUT was added for PBASIC compatibility, same function as DIR(x)= 1.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or
power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT(x), OUTPUT(x), DIR(x), or IO(x) commands. After
that they will remain digital IOs until the next reset or power up.

For the ARMmite, PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the pin
numbers shown in the Hardware Section. The numbering was assigned by physical location on the
board. So DIR, HIGH, IN, INPUT, IO, LOW, OUT and OUTPUT use these physical pin assignments. But
P0(pin) will use the bit assigned by NXP. Going forward new board designs will maintain the bit
assignment from NXP for all keywords.

For the ARMweb, DINkit, SuperPRO, PROplus and PROstart these pin numbers correspond only to the
Port 0 assigned by NXP, for instance DIR(3) corresponds to P0(3)

With version 8.11 of the firmware, ports beyond port 0, can be accessed as 32-63 for port 1, 64-95 for port
2, and so on. Or you may access the FIOxDIR register directly.

As of version 8.25-SuperPRO and 8.26-BASICchip of the firmware, using OUTPUT will also convert AD
pins to digital function.

Example

' Set pin 9 as an output
OUTPUT (9)

As of firmware version 8.12 for the SuperPRO, access to port 1,2 and 4 is

done by accessing bits 32-63, 64-95, 128-159 respectively

#include <LPC17xx.bas>

OUTPUT(10+64) ' make P2.10 and output

while 1
 x=x+1
 OUT(74) = x and 1 ' blinky for the SuperPRO and PROplus
 wait(500)
loop

Differences from other BASICs

 no equivalent in Visual BASIC
 none from PBASIC

See also

 DIR
 INPUT

Page 354

PORT P0..P4

Syntax

Pn (expression) ' where n is 0 through 4
Description

Px allows you to read or write individual pins using the NXP assigned port and pin number. When Pn (
expression) is read, the logic state of the pin corresponding to expression is returned.

When assigning a value to Pn(expression), then pin expression is set to that value if that pin has been
assigned to be an output by writing to FIOxDIR.

When read Pn(x) returns a 0 or -1. Why -1 and 0? The main reason is that operations of operators like
NOT are assumed to be bit-wise until there is a Boolean operation in the expression, and NOT 0 is equal
to -1. When setting a pin state with Pn(x) = 0 then the pin becomes low, any other value and the pin
becomes high, so Pn(x) =1 and Pn(x) = -1 both set the pin high.

These pin numbers correspond to the port pin assignments from NXP.

This feature is part of the compiler and requires version 8.04c or later. It has not been added to the
on-chip compiler of the ARMweb. Access to IO pins using Px commands is optimized by the compiler
for the SuperPRO and PROplus. These do work for the BASICchip, but have not been optimized yet.

Example

On the SuperPRO and PROplus:

#include <LPC17xx.bas>

' Set pin 9 as an output and drive it high
FIO1DIR = FIO1DIR OR (1<<9)
P1(9) = 1

P1(9) = NOT (P1(9) and (1 <<9)) ' invert pin P1(9) -- works as you can always read the state of a pin

' read value of P1(8)
x = P1(8)

' change bit 9 back to an input
FIO1DIR = FIO1DIR AND NOT(1<<9)

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 OUT
 IN
 @ ' dump memory

Page 355

Register Port Access

Description

On the LPC2103 (ARMmite, ARMexpress LITE and PRO there is only one 32 bit IO port. On the
LPC2138 in the ARMweb and DINkit, there are 10 additional lines in a second port. On the LPC17xx of
the SuperPRO and PROplus there are 4 ports that have a subset of the 32 pins connected to the outside.

Those are controlled by a DIR register, SET and CLR registers. The state of the pin can be read at
anytime with the PIN register. Each of these registers consists of 32 bits each bit corresponding to a
pin. When a bit in the DIR register is 1, then that pin is an output. The state of that output can be
controlled by writing a 1 to that bit of the SET register to make it high or 1 to that pin of the CLR register
to make it low. Writing 0s to the SET and CLR registers do not affect those pins.

Example

On the SuperPRO and PROplus:

#include <LPC17xx.bas>

' Set port 2 pins 1 through 9 as an output and drive it every other bit high
FIO2DIR = FIO2DIR or (&H3FE)

FIO2SET = &H2AA
FIO2CLR = &H154

' read value of P2.8 and 9
x = FIO2PIN and &H300

' change bit 9 back to an input
FIO2DIR = FIO2DIR and NOT(1<<9)

On the ARMweb or DINkit:

#include <LPC21xx.bas>

SCB_SCS = 3 ' required to enable port1 for firmware before 7.47

' Set port 1 pins 1 through 9 as an output and drive it every other bit high
FIO1DIR = FIO1DIR or (&H3FE)

FIO1SET = &H2AA
FIO1CLR = &H154

' read value of P1.8 and 9
x = FIO1PIN and &H300

' change bit 9 back to an input
FIO1DIR = FIO1DIR and NOT(1<<9)

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

Page 356

 OUT
 IN
 Port P0..P4
 @ ' dump memory

Page 357

Hardware Specs

Hardware Specs
 ARMmite Pin Diagram
 ARMmite PRO Pin Diagram
 PROplus SuperPRO Pin Diagram
 ARMweb Pin Diagram
 DIN rail Pin Diagram
 ARMexpress LITE Pin Diagram
 ARMexpress Pin Diagram

 Schematics
 Suggested RS232 connection

 Power On behavior
 USB use
 USB with MatLab or legacy Serial Programs
 TTL and other interfacing
 Power
 Timing
 SPI,Microwire
 Using the I2C Bus
 ARM Peripheral Use

Page 358

http://coridium.us/coridium/shop/boards/bd05-stamp

BASICchip Pin Diagram

The BASICchip is a complete System on a Chip, all that is required is 1.8 through 3.3V power and GND.
Then just wire the available IOs into your application. No extra crystals, external memories, or second
supplies required.

There are a number of ways to program the BASICchip

 BASICboard -- all you need for programming from a PC USB port -- includes a BASICchip in a
socket

 USBdongle -- used by Arduino-shield compatible Coridium products -- but you will need to wire it
up (pictured below)

 FTDI cable -- used by many people to program Arduino boards -- again pictured below, many
clones of this are available

 PICaxe cable + inverter + reset switch -- these cables use inverted serial signals so a 74HC04 or
equivalent is needed*

BASIC function pin # alt notes

IO(39) TXD(0) 16 P1(7) Serial Output, TTL compatible (active high) -- debug connection

IO(38) RXD(0) 15 P1(6) Serial Input, TTL compatible (active high) -- debug connection

/RES 23 P0(0) RESET (internal pull-up) (active low)

Page 359

http://www.coridiumcorp.com/catalog/product_info.php?products_id=83
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=768-1028-ND

IO(1) BOOT 24 P0(1) when LOW during reset, ISP is started which disables BASIC, (internal
pull-up)

IO(4)
IO(5)

SCL
SDA

27
5

P0(4)
P0(5)

open drain outputs, can only pull down, require a pull-up resistor to drive
high
can be connected to internal i2c peripheral

IO(2)
IO(3)
IO(6)
IO(7)
IO(8)
IO(9)
IO(10)
IO(11)

P0(2)
P0(3)
P0(6)
P0(7)
P0(8)
P0(9)
P0(10)
P0(11)

25
26
6
28
1
2
3
4 AD(0)

Input/Outputs -- user controlled - 0-3.3V level

4mA drive when configured as Outputs

P0.7 has a 20 mA driver

5V tolerant - use limiting resistor when connecting to a 5V supply

IO(32)
IO(33)
IO(34)
IO(35)
IO(36)
IO(37)
IO(40)
IO(41)

P1(0)
P1(1)
P1(2)
P1(3)
P1(4)
P1(5)
P1(8)
P1(9)

9
10
11
12
13
14
17
18

AD(1)
AD(2)
AD(3)
AD(4)
AD(5)

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant - use limiting resistor when connecting to a 5V supply

XTAL 19
20

optional crystal connection -- do not exceed 1.8V

VDD 21 Power 2.5-3.3V input power --do not exceed 3.3V

GND 22 Ground (0V)

AVDD 7 Analog power, must be equal to or less than VDD

AGND 8 Analog Ground (0V)

1These pins P0(4) and P0(5) are open-drain, when configured as outputs they can only pull down.
Port P1(x) pins can be accessed using the P1(x) keyword. They can also be accessed using IO, IN,
OUT, and DIR with indexes 32-41.

Minimal requirements to program a BASICchip

For reference the minimal connections for the BASIC chip are power (supplied from a 78L33 or similar or a
2V Zener diode, with adequate bypass caps) and connections for RESET, TXD0 and RXD0. These are all
that are needed to program the part from BASICtools.

Page 360

Normally you can use the internal oscillator of the LPC1114, which is set to 12MHz plus or minus 1%,
This is good enough accuracy for serial communication and for most applications. In this case XTALI and
XTALO are not connected. P0.1 is the BOOT line, you can use it as an output, but if you use it as an
input, it must be high when RESET is asserted low, otherwise your BASIC program will not start up.
Below an illustration using the FTDI serial cable. This setup uses the 5V from the cable and a 78L33 to
generate 3.3V. You should add bypass capacitors between power and ground.

Page 361

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=768-1028-ND

USB dongle

Page 362

And a minimal hookup with a Coridium USB dongle below. This time using a 2V Zener diode to
generate 3V from 5. Notice the diode cathode mark, remember Zener diodes are reverse breakdown
devices. You should also add bypass capacitors between power and ground.

Page 363

http://www.coridiumcorp.com/catalog/product_info.php?products_id=83

Using Zener Diode for power

Below another illustration using the FTDI serial cable. This setup uses the 5V from the cable and a 2V
Zener diode to keep the supply at 3V, make sure the cathode of the diode connects to the 5V, remember
Zener diodes are reverse breakdown devices. You should add bypass capacitors between power and
ground.

Page 364

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=768-1028-ND

notes --

Page 365

*PICaxe cable -- You can use FTDI's utility to un-invert the signals of the PICaxe USB cable, but that is a
cumbersome process.

Page 366

BASICchip SO-20 Pin Diagram

The BASICchip is a complete System on a Chip, all that is required is 1.8 through 3.3V power and GND.
Then just wire the available IOs into your application. No extra crystals, external memories, or second
supplies required.

There are a number of ways to program the BASICchip. The first 2 methods connect directly to the
breakout board.

 USBdongle -- used by Arduino-shield compatible Coridium products
 FTDI cable, SparkFun FTDI breakout -- used by many people to program Arduino boards
 PICaxe cable + inverter + reset switch -- these cables use inverted serial signals so a 74HC04 or

equivalent is needed*
BASIC function pin # alt notes

 TXD(0) 5 P0(4) Serial Output, TTL compatible (active high) -- debug connection

 RXD(0) 19 P0(0) Serial Input, TTL compatible (active high) -- debug connection

 /RES 4 P0(5) RESET (internal pull-up) (active low)

IO(1) BOOT 12 P0(1) when LOW during reset, ISP is started which disables BASIC, (internal
pull-up)

IO(2) P0(2) 7 Input/Outputs -- user controlled - 0-3.3V level

Page 367

http://www.coridiumcorp.com/catalog/product_info.php?products_id=83
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=768-1028-ND

IO(3)
IO(6)
IO(7)
IO(12)
IO(13)
IO(14)
IO(15)
IO(16)
IO(17)

P0(3)
P0(6)
P0(7)
P0(12)
P0(13)
P0(14)
P0(15)
P0(16)
P0(17)

6
18
17
3
2
20
11
10
1

4mA drive when configured as Outputs

P0.2, P0.3, P0.7, P0.12, P0.13 have 20 mA drivers

5V tolerant - use limiting resistor when connecting to a 5V supply

IO(10)
IO(11)

I2C1 9
8

 open drain outputs (these IOs only pulldown)

IO(8)
IO(9)

XTAL 14
13

 optional crystal connection -- normally IOs in BASIC

 VDD 15 Power 1.8-3.3V input power --do not exceed 3.3V

 GND 16 Ground (0V)

1These pins P0(10) and P0(11) are open-drain, when configured as outputs they can only pull down.

Breakout Board version -- BASICchip SO-20

For reference the minimal connections for the BASIC chip are power supplied through a 2V Zener diode, with
adequate bypass caps and connections for RESET, TXD0 and RXD0. These are all that are needed to
program the part from BASICtools.

Page 368

Normally you can use the internal oscillator of the LPC812, which is set to 12MHz plus or minus 1%, This is
good enough accuracy for serial communication and for most applications. In this case XTALI and XTALO
are used as IO(8) and IO(9). IO(1) is the BOOT line, you can use it as an output, but if you use it as an
input, it must be high when RESET is asserted low, otherwise your BASIC program will not start up.

Page 369

CPU details

 These are links to detailed documentation for the CPUs used in the Coridium products. These files are at
the NXP website, when in doubt check www.nxp.com for the latest.

LPC1114 used in the BASICchip, PROstart and BASICboard

 LPC1114 data sheet

 LPC1114 user manual

LPC1756 used in the Super PRO and LPC1751 used in the PROplus

 LPC1756 data sheet

 LPC1756 user manual

LPC2103 used in the ARMmite, ARMexpress LITE and ARMmite PRO

 LPC2103 data sheet

 LPC2103 User manual

LPC2106 used in the ARMexpress

 LPC2106 data sheet

 LPC2106 User manual

LPC2138 used in the ARMweb

 LPC2138 data sheet

 LPC2138 user manual

Page 370

http://www.nxp.com
http://www.coridium.us/files/UserManuals/DS1114.pdf
http://www.coridium.us/files/UserManuals/UM1114.pdf
http://www.coridium.us/files/UserManuals/DS175x.pdf
http://www.coridium.us/files/UserManuals/UM175x.pdf
http://www.coridium.us/files/UserManuals/DS2103.pdf
http://www.coridium.us/files/UserManuals/UM2103.pdf
http://www.coridium.us/files/UserManuals/DS2106.pdf
http://www.coridium.us/files/UserManuals/UM2106.pdf
http://www.coridium.us/files/UserManuals/DS213x.pdf
http://www.coridium.us/files/UserManuals/UM213x.pdf

DATA Logger Pin Description

Pins in the Array area

The DATAlogger is the first of the multi-core CPU boards from Coridium. BASICtools supports multi-core
programming .

Pins in the Array area

J1.1
J1.2
J1.3
J1.4
J1.5
J1.6
J1.7
J1.8
J1.9
J1.10
J1.11
J1.12
J1.13
J1.14
J1.15
J1.16
J1.17
J1.18

IO(4)
IO(1)
IO(0)
IO(38)
IO(10)
IO(2)
IO(11)
IO(40)
IO(139)
IO(178)
IO(5)
IO(175)
IO(163)
IO(164)
IO(165)
IO(104)
..
..

P1_0 -- SGPIO7
P0_1 -- SGPIO1
P0_0 -- SGPIO0
P1_13 -- SGPIO9
P1_3 --SGPIO10
P1_15 -- SGPIO2
P1_4 -- SGPIO11
P1_5 -- SGPIO15
P9_6 -- SGPIO8
P9_5 -- SGPIO3
P6_6 -- SGPIO5
P6_7 -- SGPIO6
P2_2 -- SGPIO12
P2_4 -- SGPIO13
P2_5 -- SGPIO14
P7_0 -- SGPIO4
WAKEUP

PF_4 -- CLKIN

J2.1
J2.2
J2.3
J2.4
J2.5
J2.6
J2.7
J2.8

IO(8)
IO(9)
..
IO(35)
IO(39)
IO(173)
NC
IO(41)

P1_1 -- pulled up during RESET (required for correct boot)
P1_2 -- pulled down during RESET (required for correct boot)
CLK0
P1_10
P1_14
P4_9
..
P1_6
..

Page 371

J2.9
J2.10
J2.11
J2.12
J2.13
J2.14
J2.15
J2.16
J2.17
J2.18

GND
IO(97)
IO(7)
IO(167)
IO(102)
IO(14)
IO(70)
..
Vbat
..

P6_2
P2_7 -- pulled up during RESET (required for correct boot) --
connected to LED and ISP BOOT pin
P2_8 -- pulled down during RESET (required for correct boot)
P6_10
P2_10
P4_6
P3_0
..
RTC_ALARM

J3.1
J3.2
J3.3
J3.4
J3.5
J3.6
J3.7
J3.8
J3.9
J3.10
J3.11
J3.12
J3.13
J3.14
J3.15
J3.16
J3.17
J3.18

IO(174)
IO(34)
IO(37)
IO(75)
IO(71)
IO(13)
IO(96)
TXD0
RXD0
..
..
IO(101)
IO(42)
IO(44)
IO(105)
IO(107)
IO(66)
..

P4_10
P1_9
P1_12
P5_2
P5_7
P1_18
P6_1
P2_0
P2_1
P4_7
I2C0C
P6_9
P2_9 -- pulled down during RESET (required for correct boot)
P2_12
P7_1
P7_3
P4_2
RESETn

J4.1
J4.2
J4.3
J4.4
J4.5
J4.6
J4.7
J4.8
J4.9
J4.10
J4.11
J4.12
J4.13
J4.14
J4.15
J4.16
J4.17
J4.18

IO(73)
IO(33)
IO(36)
IO(77)
IO(3)
..
..
IO(99)
IO(162)
IO(172)
..
..
IO(103)
IO(43)
IO(168)
IO(106)
IO(68)
IO(110)

P5_0
P1_8
P1_11
P5_4
P1_16
P1_19
P6_0
P6_4
P2_2
P4_8
USB1P
I2C0D
P6_11
P2_11
P3_1
P7_2
P4_4
P7_6

J5.1
J5.2
J5.3
J5.4
J5.5
J5.6
J5.7
J5.8
J5.9

IO(74)
IO(32)
IO(76)
IO(78)
IO(79)
IO(12)
IO(15)
IO(98)
IO(100)

P5_1
P1_7
P5_3
P5_5
P5_6
P1_17
P1_20
P6_3
P6_5
P6_8

Page 372

J5.10
J5.11
J5.12
J5.13
J5.14
J5.15
J5.16
J5.17
J5.18

IO(176)
..
IO(166)
..
IO(72)
IO(45)
IO(169)
IO(64)
IO(69)

USB1M
P2_6
CLK2
P6_12
P2_13
P3_2
P4_0

P4_5

Pins that are pulled up or down during RESET can be used as inputs if during RESET your circuitry
does not drive them or if it drives them to the required state for boot. They can all be used as outputs
after RESET. P2_7 should be driven low during RESET to enter ISP mode which is used for loading C
programs, in that case the other BOOT select pins are ignorred.

Some of these digital pins are also connected to the Arduino digital pins.

In most NXP parts the port designation corresponds to the GPIO port, this is NOT the case with the
LPC4330. See the NXP user manual for detailed pin assignments.

Analog connections and Arduino pin connections

Page 373

AD pins

With the DATAlogger, the AD converters are connected to 8 dedicated analog pins. ADC0 can
be used as an analog input, or the output of the DAC.

Alternate Pin functions

The LPC4330 supports a number of dedicated functions. Those include 4 UARTs, USB, 2 SSPs,
1 SPI, 2 CAN, 2 I2C, I2S, 2 multi-channel PWMs, Quadrature Encoder, dedicated motor control
PWM, interrupts, timer counter capture and match.

In addition most can be configured with pull-ups and default to pull-ups following reset.

Details can be found in NXP's User manual.

UARTs are enabled by calling BAUD(x) for x=0 to 3. UART0 is enabled by default as the
programming debug connection. The pin assignment BASIC uses is in the following table (you
can change the settings by changing the PINSEL registers, details in the NXP User Manual)

UART BASIC NXP UART
RXD(0) IO(161) P2_1 UART0
TXD(0) IO(160) P2_0
RXD(1) IO(39) P1_14 UART1
TXD(1) IO(38) P1_13
RXD(2) IO(3) P1_16 UART2
TXD(2) IO(2) P1_15
RXD(3) IO(164) P2_4 UART3
TXD(3) IO(163) P2_3

Power connections

Page 374

Diode steering allows 5V power to be supplied from either the USB connector or the 6 pin Serial Debug
connector.

If you intend to supply 5V power from the Arduino 6 pin power connector, you should not connect the
USB connector.

The schematic describes this circuit

Page 375

The full schematic can be seen here

Real Time Clock Oscillator

The DATAlogger has a provision to load a 32 KHz crystal (Y2) and 2 20pf caps (C9 and C10) to use
that for the Real Time Clock. It can also add battery backup by loading the ML2020 battery (on either
top or bottom of board), 330 ohm resistor (R5) and a BAT54C diode (D3).

The crystal should be a 32.768 KHz can type with an 18pF rating the capacitors are 0603 size 20pF.

Page 376

http://www.coridiumcorp.com/files/Schematics/DATAlog.PDF

 ..

Page 377

LPC11U37 Details

The LPC11U37 is footprint and pin superset of the old Parallax BASIC stamp ®. The board can be used with
5V TTL signals. It has a total of 40 IO pins available.

BASIC or C programs can be downloaded using the builtin USB connector. MakeItC and BASICtools use the
USB serial connection of the board. You can load mBed programs by shorting the ATN and GND pins (3 and
4 of the stamp arrangement) which then bring the device up as a disk drive that you can overlay the
firmware.bin file. It can be ordered with an optional JTAG/SW connector so that it can use Keil, IAR,
MCUxpresso or other tools. The board can also be ordered as a JTAG/SW debugger that can connect to
other ARM CPUs.

Digital IO connections

Below is a diagram of the pins, with the USB connector shown at the top. The diagram on the right ONLY
applies to the handful of alpha test boards shipped via eBay or Kickstarter beta testers.

The NXP pins P0.1-31 shown as 1-31 and P1.0-31 as 32-63 below in red. For convenience the pins can
be refered to as SP0-39 as stamp pins by using the definitions in STAMP_PINS.bas and STAMP_PINS.h
(shown in black and green below).

Analog pins

There is an A/D converter with an 8 input analog multiplexor. After power on these pins are inputs,
when a program calls for an AD input they are converted to analog.

Special purpose pins

RESET pin starts the ARM program if the ATN/SP18 (P0.1) pin is high. If you use ATN/SP18 P0.1 as
an input you MUST make sure it is in the high state when RESET is asserted, otherwise your program

Page 378

will NOT start. RESET can also be defined as a IO, though you must enable it with a specific call. On
power on the RESET pin has an internal pullup and must be high during this time or your program will
not start.

SOUT and SIN (SP17-18) are configured as inputs on reset. They are converted to TTL serial lines
(positive true) when BAUD(1) is set. The USB serial connection is TXD(0), RXD(0) and configured by
default on reset.

Pins are configured as digital inputs on power on, SP23 and SP24 are open collector pins, which can
be used as IOs or dedicated I2C pins. The Serial Wire debug pins (SP30 SP35) are converted to
inputs by the initial firmware, but can be used by SW/JTAG pins by other tools such as Keil, IAR and
MCUxpresso.

The LPC11U37 supports a number of dedicated functions. Those include 1 UARTs, 2 SSP/SPI, 1 I2C,
I2S, 2 multi-channel PWMs,timer counter capture and match.

Details can be found in NXP's User manual .

Memory Map

The full schematic can be seen here

Page 379

http://www.coridium.us/docs/UM11U37.pdf
http://www.coridiumcorp.com/files/Schematics/LPC11U37.pdf

The internal 24 stamp pins are on a 0.1" DIP spacing with a 0.6" width. An additional 24 pins are also 0.1"
space with a 0.8" width.

Part placement

Page 380

Page 381

LPC4078 Details

The LPC4078 is footprint and pin compatible with the Arduino PRO, as well as Coridium's SuperPRO and
PROplus. The board can be used with 5V TTL signals.

BASIC or C programs can be downloaded using the installed test connector using the USB dongle contained
in Coridium's evaluation kit or using the SparkFun USB Basic Breakout board or FTDI cable from Digikey.
More details on these connections here.

Digital IO connections

Below is a diagram of the pins, note it has been rotated 90 degrees to make it easier to read,

IO(32) is the equivalent of P1(0) and can be accessed either way.

Special purpose pins

RESET pin starts the ARM program if the BOOT(P2.10) pin is high. If you use P2.10 as an input you
MUST make sure it is in the high state when RESET is asserted, otherwise your program will NOT

Page 382

http://www.sparkfun.com/commerce/product_info.php?products_id=8772
http://search.digikey.com/us/en/products/TTL-232R-5V/768-1028-ND/2003493

start.

UARTs are enabled by calling BAUD(x) for x=0 to 3. UART0 is enabled by default as the programming
debug connection. The pin assignment BASIC uses is in the following table (you can change the
settings by changing the PINSEL registers, details in the NXP User Manual)

UART BASIC NXP UART
RXD(0) IO(3) P0(3) / AD(6) UART0
TXD(0) IO(2) P0(2) / AD(7)
RXD(1) IO(65) P2(1) UART1
TXD(1) IO(64) P2(0)
RXD(2) IO(73) P2(9) UART2
TXD(2) IO(72) P2(8)
RXD(3) IO(157) P4(29) UART3
TXD(3) IO(156) P4(28)

Analog connections

4 A/D converters are readily available, Analog 2-4. 2 more are available, but share the pins with
UART0 -- what was NXP thinking, I have no idea.

1 10 bit DAC is available shared with AD(3) available on the SuperPRO (not on PROplus)

On reset or power up the AD pins are configured by software as AD inputs. To change those
to digital IOs, the user must write to the appropriate PINSEL register, or with version 8.11
firmware or later you can change it to an IO by accessing the corresponding IO pin in the
following table.

AD BASIC NXP
AD(2) IO(25) P0(25),DACOUT
AD(3) IO(26) P0(26)
AD(4) IO(62) P1(30)
AD(5) IO(63) P1(31)
AD(6) IO(3) RXD(0)/P0(3) / AD(6)
AD(7) IO(2) TXD(0)/P0(2) / AD(7)

The LPC4078 does support an external reference for the A/D converters, but to use the
Arduino AREF pin a jumper is required (details on the schematic).

Details can be found in NXP's User manual.

Memory Map

Page 383

The full schematic can be seen here

And the DXF file

Part placement

Page 384

http://www.coridiumcorp.com/files/Schematics/lpc4078.pdf
http://www.coridiumcorp.com/files/Schematics/lpc4078.DXF

SDcard sockets and USB sockets are not normally loaded, but they can be loaded by special order
(minimum charges apply).

Page 385

LPC54005 Details

The LPC54005 is footprint and pin compatible with the Arduino PRO. The board can be used with 5V TTL
signals.

BASIC or C programs can be downloaded using the installed using the USB0 connector.

Digital IO connections

Below is a diagram of the pins, note it has been rotated 90 degrees to make it easier to read,

Special purpose pins

RESET pin starts the ARM program depending on the state of the ISP pins. With no jumpers the ARM
program in QSPI (SPIFI) Flash is copied to RAM and then executed.

Page 386

The LPC54005 supports a number of dedicated functions. Those upto 11 Flexcoms that can be
USARTs, SPI, or I2C, 2 Flexcomms support I2S, 5 timer/counters with PWM, and 1 State Controller
Timer.

In addition most can be configured with pull-ups and default to pull-ups following reset.

Details can be found in NXP's User manual.

Memory Map

The full schematic can be seen here

And the DXF file

Page 387

https://coridium.us/files/Schematics/aruba100_2.pdf
http://www.coridiumcorp.com/files/aruba-100.DXF

Part placement

LCD pin out

This board has been designed to mate to LCD boards for the Arduino Uno (pin out picture below). Many
of these boards also have an SD card and touch screen, that we have published example files for.

Page 388

Page 389

Firmware Installation

First download the NXP LPCScrypt installer . Newer version may be available at the NXP site. Run that
installer.

Open a command prompt from Windows, and go to the LPCScrypt install directory -- typically
C:\NXP\LPCScrypt\bin

Add jumper 0 to the ISP lines and connect USB0. (we typically use 2 pin header with a shorting block

that we hold in place while connecting the USB0)

Then check that the LPC54005 is in DFU mode by typing dfu-util -l. If you don't see any devices repeat
the powerup sequence with the jumper installed.

In this case 1 DFU device was found [1fc9:001f] . You can remove jumper 0 at this point

Next load the firmware using that DFU number and firmware binary.

Page 390

https://www.coridium.us/files/LPCScrypt_installer_2.1.0_842.exe

When the LED is flashing the firmware binary has been copied to QSPI (SPIFI) Flash.

Reboot (by disconnecting USB0 and reconnecting) and open BASICtools.

Page 391

LPC54102 Details

The LPC54102 is footprint and pin compatible with the Arduino PRO. The board can be used with 5V TTL
signals.

BASIC or C programs can be downloaded using the installed test connector using the USB dongle contained
in Coridium's evaluation kit or using the SparkFun USB Basic Breakout board or FTDI cable from Digikey.
More details on these connections here.

Digital IO connections

Below is a diagram of the pins, note it has been rotated 90 degrees to make it easier to read,

IO(32) is the equivalent of P1(0) and can be accessed either way.

Special purpose pins

RESET pin starts the ARM program if the BOOT(P0.31) pin is high. If you use P0.31 as an input you
MUST make sure it is in the high state when RESET is asserted, otherwise your program will NOT
start.

Page 392

http://www.sparkfun.com/commerce/product_info.php?products_id=8772
http://search.digikey.com/us/en/products/TTL-232R-5V/768-1028-ND/2003493

The LPC54102 supports a number of dedicated functions. Those include 4 UARTs, 2 SSPs, 1 SPI, 2
CAN, 2 I2C, I2S, 2 multi-channel PWMs, Quadrature Encoder, dedicated motor control PWM,
interrupts, timer counter capture and match.

In addition most can be configured with pull-ups and default to pull-ups following reset.

Details can be found in NXP's User manual.

Memory Map

Page 393

The full schematic can be seen here

And the DXF file

Part placement

Page 394

http://www.coridiumcorp.com/files/Schematics/LPC54102.pdf
http://www.coridiumcorp.com/files/Schematics/niobe2.DXF

Memory Maps

All addresses are hex values.

 BASICchip, ARMmite ARMexpress LITE, ARMmite PRO, PROplus

ARMmite ARMexpress LITE, ARMmite PRO, PROplus

 ARMexpress

Page 395

ARMexpress

 SuperPRO

Page 396

SuperPRO

ARMweb and DINkit/Ethernet

Page 397

ARMweb and DINkit/Ethernet

DINkit (USB) and Stand-alone compiler

User code starts loading at &H3000.

Strings and DATA statements are stored in the last Flash Block, which depends on the Memory Map of the
device (details in the NXP User Manuals). In the DINkit the last Flash block is from &H7C000 to &H7CFFF

LPC2103 products - ARMmite, ARMmite PRO and ARMexpress LITE

20.48K is available for code, DATA statements and string constants.

5.12K is available for data (1280 words)

LPC2106 ARMexpress

Page 398

106.49K is available for code, DATA statements and string constants.

62.5K is available for data (15K words)

LPC2138 ARMweb, DINkit (Ethernet)

131K is available for code, DATA statements and string constants.

5.12K is available for data (1280 words)

DATA Memory Allocation

Local variables for FUNCTIONs and SUBs are allocated from global memory. This allows for a smaller stack
size and faster calls to FUNCTIONs and SUBs. The ARMmite has only 8K total and has no stack overflow
checking.

Page 399

ARM Memory Peripheral Use

Memory Maps

Can be found here.

The ARM peripheral bus

Timer0 free running micro-second counter (TIMER command)
Timer1 used on ARMweb or with ON TIMER
Timer1 setup as 1msec timer, may be reprogrammed
Timer1 , Timer2 and Timer3 used for HWPWM on ARMmite or ARMexpress LITE
Uart0 UART for debug/download
Uart1-3 Not Used unless requested by user with BAUD(1) .. BAUD(3)
PWM used when HWPWM is engaged on PROplus, SuperPRO, used in the web versions of LPC1768
I2C Not Used
SPI reserved
RTC used for time-keeping

Interrupt use -- 21xx

FIQ not used

ISR0 UART0

ISR2 PWM -- only used by ARMweb

ISR3 UART1 if RXD1, TXD1 used

ISR4 EINT0 if ON EINT0 used

ISR5 EINT1 if ON EINT1 used

ISR6 EINT2 if ON EINT2 used

ISR7 TIMER1 if ON TIMER used

ARMweb has EINT0 connected to ENC28J60,

but it is not used and available to the user.

ARMweb firmware also uses EINT2 for remote debugging.

Interrupt use -- 175x, 1768

ISR21 UART0

ISR22 UART1

web

version --

ISR25 PWM1

If a function is not included in the BASIC code the interrupt is available,

for instance RXD(1) uses the UART1 interrupt.

Background Tasks

Except for the ARMweb, the only background tasks are interrupt handlers for UART0 and UART1. UART1 is
not active until the BAUD(1) is assigned.

Page 400

BASICtools Dual Core debuging

The DATAlogger is the first of the multicore products. BASICtools allows you to compile programs for both
CPUs.

The M4 CPU is the master CPU and is the first to start up. The M4 initializes the system, and checks for
valid BASIC code, and if there is valid code it will launch both M4 and M0

Peripheral Sharing
The M4 CPU controls writes to Flash, interrupts for UART0, and SDcard access. The M4 has a floating point
unit so floating point math will be much faster on the M4 CPU.

The M0 CPU can send debug information to UART0, but when it does so it uses polling so it can potentially
wait until UART0 is idle. The M0 can NOT receive characters on UART0, as the M4 interrupt preempts them.

Other peripherals can be used by either CPU, but is up to the user to decide which CPU has control. While
in some cases you can share peripherals, it is better to dedicate them to one CPU or the other. This is
especially true for interrupts, the M0 can setup interrupts, but if that interrupt is setup by the M4, results are
not predictable.

BASICtools multicore support

When BASICtools begins, it does not check to see which type of board it is connected to. But when
you load the first program it determines that this is a multicore chip and adds the ability to select the core
in the upper right hand corner.

By default the M4 (master CPU) is the first to be loaded with a program. Note that any program loaded
into the M0 will be executed in parallel with the M4 program.

When you switch to load programs on the M0, the M4 will be loaded with a short program that starts the
M0 and then the M4 terminates.

Both CPUs can access RAM at &H2000C000, it can be used for mailbox, shared data or other
communication between the CPUs. Pointers can be used access there. A future version of the compiler
will allow sharing of some global variables between the 2 CPUs.

Page 401

The intended method of debugging is to debug programs separately, then once the program is operating
correctly load the M0 CPU program, then load the M4 program. After that when the program runs, both
CPU programs will be executed.

When the M4 starts up it looks for a valid program in both M4 and M0 memory, and if found they will be
started. The easiest way to "erase" programs in both memories is to select the M0 CPU and type PRINT
into the command then push the RUN button. That starts you off with a clean slate.

Page 402

Power

Common to all boards

Initial Power on conditions
On power up all pins are tri-stated on the NXP LPC based boards Some have weak pullup or pulldown
resistors enabled depending on model That information is containted in the pin description of the User
Manual or Data Sheet.

Restarting the program
If the user has programmed the ARMexpress/ARMmite, that program will be started when the power is
applied, or restarted when RESET is asserted either low on the open-collector pin 22, or positive true on the
ATN pin.

If the user program ends by getting to the last statement of the program or executing an END instruction, the
ARMexpress will power down and await either input on the debug serial port, or a RESET.

Break operation or STOP
If the user code is running, it can be stopped by a RESET condition. This will normally restart the user code,
but there is a short window (500 msec) where the ARMexpress will wait to see if there is input on the serial
debug port. If the character received on the serial port is ESCAPE (27) or CTL-C (3) then the user program
is prevented from running and the ARMexpress is ready to be reprogrammed. Or the user can restart the
program by typing RUN or using the RUN button in BASICtools.

USB Power
The USB specification allows for up to 500 mA at 5V to be supplied to external devices. In many cases this
is limited to 100 mA by the manufacturer of the PC or hub.

ARMexpress and its eval PCB uses approximately 50 mA when running and 10 mA when idle. So it can be
powered from the USB port for programming, without the need for the alternate power supply. The same is
true for the ARMmite.

Once the programming is completed, the ARMexpress may be run without a connection to a PC. In this
case an alternate power supply connection has been provided. This input goes to a regulator to supply 5V
which is connected to pin 24 on the ARMexpress. Onboard the ARMexpress this will be regulated to 3.3V
and 1.8V for use by the ARM CPU. The ARMmite takes this same unregulated input to generate either 5V or
3.3V on the rev2/rev3 versions respectively.

Smart Power

The USB evaluation board can be powered from either the USB, an external supply or BOTH. Power from the
USB is controlled such that it is turned on by the USB controller. Power to the ARMexpress can also come
from the external power supply and these are controlled to allow both USB and the power supply to be
connected to the device at the same time.

The power connector is a 2.1mm, which is compatible with the Cui PP-002B part.

Battery backup

The ARMmite has a provision for adding a battery to keep its real time clock alive when power is removed.
The circuit is designed to use a Panasonic ML2020 rechargeable Li battery.

Parallax STAMP compatibility

The Parallax STAMP products operate from a 5V supply. This can come from an unregulated input on pin
24, or from a regulated 5V supply on pin 21. The ARMexpress is backward compatible with both these
connections, but for new designs it is recommended that power be supplied on pin 24. The voltage required
is 4.5V or greater on pin 24, or 5V on pin 21. Also for C programming, pin 21 should not be connected to
power. The maximum voltage that may be applied to either pin 24 is 16V, but this is not a recommended

Page 403

continuous voltage, as it will cause extra heat to be generated by the ARMexpress onboard voltage
regulators. For this reason the recommended maximum is 9V. When using an unregulated supply not
supplied by Coridium, care should be exercised, as the current draw of the ARMexpress is low and the
voltage will often be much higher than the rated voltage. The user should ensure that this voltage does not
exceed the limit of 16V.

Page 404

Power On Behavior

Initial Power on conditions

On power up all pins are tri-stated on the ARMexpress, ARMweb, PRO or ARMmite. On the SuperPRO and
PROplus, pins are also tri-stated, but all have a weak pull-up resistor.

Following reset, the board waits at least 0.5 seconds for an ESC character (or upto 3 seconds for direct USB
connected boards like ARMstamp or LPC54005), which if received stops the user program from running. If no
ESC is received the user program starts.

Restarting the program

If the user has entered a BASIC program into the ARM, that program will be started when the power is
applied, or restarted when RESET is asserted either with the pushbutton, or from the BASICtools program via
asserting the DTR line (low on ARMmite, high on ARMexpress).

The BASIC firmware sends out a &H01 to indicate a user BASIC program has started. This tells BASICtools
that the program is running (signified by turning the RUN button to red and showing STOP. If your program
changes the baudrate and you are using BASICtools as a terminal window, you should also send out this
character after you have switched baud rates, otherwise BASICtools will not think you program is running and
it will try to compile any input from the enter line rather than passing it on to your program.

If the user program ends by getting to the last statement of the program or executing an END instruction, the
ARM will await either input on the debug serial port, or a RESET. The BASIC firmware sends out a &H04
which indicates to BASICtools that the program has ended.

Reset and Boot for PRO boards

For the PRO, PROplus and SuperPRO boards when connecting a PC to a board that is running, the reset
and boot control signals will be toggled by the PC. This is a function of Windows and the Drivers. This will
reset the board or possibly put it into a load program state. To avoid this you can disconnect the Reset or
Boot signals from the USB dongle, either by cutting pins or making an adapter using a 6 pin female header
with long pins(available from SparkFun).

The above shows both RESET and BOOT signals disconnected.

Break operation or STOP

If the user code is running, it can be stopped by a RESET condition. This will normally restart the user code,
but there is a short window (500 msec) where the ARM will wait to see if there is input on the serial debug
port. If the character received on the serial port is ESCAPE (27) or CTL-C (3) then the user program is
prevented from running and the is ready to be reprogrammed.

BASIC Boot Loader serial commands

Page 405

http://www.sparkfun.com/commerce/product_info.php?products_id=9280

When the user program is not running or not at a STOP, the BASIC bootloader is functioning.

There are 2 versions of this bootloader, the one on the ARMweb, and then all the others. The ARMweb has a
full compiler ready to compile BASIC programs line by line. This can be used with the TclTerm terminal
emulator or the web interface of the ARMweb. when running BASICtools programs are compiled on the PC
and downloaded to the ARM. The ARMweb also supports the commands used by all the others, and these
are used to load and control BASIC programs-

 :20.... Coridium hex format line, copy this data into the code buffer
 :00000001FF write the code buffer into the appropriate Flash space
 ARM responds by sending +
 ? get vectors for ARMbasic compiler running on the PC
 ^ launch any user program contained in the Flash space
 @HHHH dump memory starting at HHHH which is a hex value without a preceding &H or $
 "message echo message back
 !HHHH VVVV write to hex address HHHH the hex value VVVV
 ctl-C or ESC on reset run the BASIC bootloader rather than the User program

At a STOP the ARM will respond to ^ run or @ dump-memory commands which are used in the BASICtools
variables page.

Page 406

PROstart Pin Description

The PROstart is footprint and pin compatible with the Arduino PRO.

BASIC or C programs can be downloaded using the installed test connector using the USB dongle contained
in Coridium's evaluation kit or using the SparkFun USB Basic Breakout board or FTDI cable from Digikey.
More details on these connections here .

Digital IO connections

Port pins can be controlled with theIN, OUT... keywords . For port 1 pins are accessed with IO(32)
through IO(41).

IO(4) and IO(5) are open-drain outputs, so for those to go high, you need to have a pull-up resistor (1K to
10K are good values, depending on the speed required).

Special purpose pins

The LPC1114 supports a number of dedicated functions. Those include 4 timers, 2 SPIs, and I2C.

In addition most can be configured with pull-ups or pull-downs and default to pull-ups following reset.

Page 407

http://www.sparkfun.com/commerce/product_info.php?products_id=8772
http://search.digikey.com/us/en/products/TTL-232R-5V/768-1028-ND/2003493

Details can be found in NXP's User manual.

Analog connections

6 A/D converters are readily available, Analog 0-5.

On reset or power up the AD pins are configured by software as AD inputs. To change those to digital
IOs, use IO(11), IO(32) through IO(36). Those pins will remain digital IOs until the next reset or can be
changed back to A/D by writing to the PINSEL register.

The LPC1114 does not support an external reference for the A/D converters.

The A/D input requires a drive impedance of 7.5K or less (see NXP LPC175x spec sheet).

Power connections -- SuperPRO

The board is shipped with a USB mini B type female connector for power, it is not a USB port. With the
wide availability of USB chargers, this is becoming the most cost effective method of powering small
electronics.

Pads for a a 2mm power jack compatible with a JST PHR/S2B or SparkFun PRT8671 for various
battery packs from SparkFun are available, but not loaded in the basic configuration.

Diode steering allows power to be supplied from 5V USB, the USB test connector, or the battery
connector. Because of the Schottky diodes, all 3 power sources can be connected simultaneously.

The schematic below describes this circuit on the PROstart

Page 408

http://search.digikey.com/scripts/dksearch/dksus.dll?pname&site=us;lang =en&wt.mc_id=Dxn_US_T091_Catlink;name=455-1165-ND
http://www.sparkfun.com/commerce/product_info.php?products_id=8671

 The full schematic can be seen here

Power connections details

The 3.3V regulator can supply 150 mA, with 10 mA being used by the LPC1114.

The analog GND should be used to connect to the GND of analog inputs. Digital and Analog GNDs are
connected together with a small trace, but to minimize noise you should use the analog GND only for
analog signals.

Jumpers and test connector for Program Download

The USB Dongle from Coridium or FTDI cable will supply 5V from the USB to power the PROstart. The
Coridium USB dongle also controls the RESET and BOOT signals to automatically load C or BASIC
programs using MakeItC or BASICtools. Remember, if you load a C program, it will erase the BASIC
firmware and you will not be able to load BASIC programs after that.

Page 409

http://www.coridiumcorp.com/files/Schematics/PROstart.pdf

When using the SparkFun FTDI Basic Breakout Board, a limited amount of power can be supplied from
the BBB, but this is limited to 50 mA and after diode drops, its about 2.8V to the LPC1114. In practice
this will run, but it is outside the part specifications, so it should be limited in use.

Also with the SparkFun FTDI Basic Breakout Board or FTDI cable to load a C program, the LOAD C
jumper needs to be installed, then removed to run the program. The Coridium USB dongle controls the
BOOT signal so C programs can be loaded without the jumper.

BASIC programs can be loaded and controlled using the Cordium USB dongle, FTDI cable, or SparkFun
board, with no additional steps/jumpers.

An alternative is to use a 2 pin header with a shorting block (pictured below)

Page 410

ARMexpress Suggested RS232 / USB connection

 For a finer image see ARMexpRS.pdf in your install directory (C:\Program Files\Coridium\Schematics).

Pin 21

On most Parallax boards this line is connected to a regulated 5V supply.

Do not connect a power source greater than 5V directly to pin 21.

When not connected this pin is pulled up to 3.3V by RP1 on the module.

When using MakeItC, this line is pulled low to download a C program, which can be done automatically by
connecting to an NPN transistor with the RTS line on the serial port.

Pin 3

On later revision ARMexpress and ARMexpress LITE a 1K pull-down has been added on the module between
pins 3 and 4 (as pictured below. If your unit does not have this, then a 1K pull-down resistor is required,
when there is no signal on pin 3.

Page 411

USB connection

A serial connection can be made with a USB breakout board. The suggested wiring should be done as
follows. The inversion of RXD, TXD and DTR can be done by the FTDI chip using their MProg utility. Mprog
programs ALL FTDI parts connected to the PC, so make sure only the one you want to change is
connected. Also changes do not occur until the FTDI chip is powered up (so you must disconnect it and
reconnect it).

Page 412

http://www.ftdichip.com

Hints for debugging

Make sure you have both Power and GND connected.

When running BASICtools, the idle condition is

 PIN 1 low

 PIN 2 low

 PIN 3 low

 PIN 22 high

 PIN 21 high

When RESET, either by pulling 3 high or 22 low, there will be some activity on pin 1 as the ARMexpress
sends the Welcome message.

Reset and Boot for PRO boards

For the PRO, PROplus and SuperPRO boards when connecting a PC to a board that is running, the reset
and boot control signals will be toggled by the PC. This is a function of Windows and the Drivers. This will
reset the board or possibly put it into a load program state. To avoid this you can disconnect the Reset and
Boot signals from the USB dongle, either by cutting pins or making an adapter using a 6 pin female header
with long pins(available from SparkFun).

Page 413

http://www.sparkfun.com/commerce/product_info.php?products_id=9280

Page 414

Schematics

PDF copies of the schematics are copied into the Program Files/Coridium/Schematics directory when you
install either the BASIC or C tools.

Or you can follow these links to PDF schematics on the Coridium website.

 BASICboard schematic
 ARMmite schematic

 ARMmite rev 2 schematic
 PROstart schematic
 PRO schematic
 PROplus schematic
 Super PRO schematic

 PROplus / SuperPRO rev 4/5 schematic
 USB dongle schematic

 ARMweb schematic
 ARMweb rev 3 schematic

 DATA Logger schematic
 DINkit schematic

 DINkit USB board
 DINkit Ethernet board

 XB Sensor
 Wireless ARMmite

DXF files are mechanical drawings of the boards, they are also available from these links or in the
Schematics directory.

 ARMmite mechanical
 DATA Logger mechanical
 PROstart mechanical
 PRO mechanical
 ARMweb mechanical
 SuperPRO PROplus mechanicals
 XB sensor mechanicals

For a DXF viewer, try http://www.abviewer.com/viewer.html, not free but reasonable and has a 30 day
trial.

Page 415

http://www.coridiumcorp.com/files/Schematics/BCprogrammer.pdf
http://www.coridiumcorp.com/files/Schematics/ARMmiteSCH.pdf
http://www.coridiumcorp.com/files/Schematics/ARMmite2SCH.pdf
http://www.coridiumcorp.com/files/Schematics/PROstart.pdf
http://www.coridiumcorp.com/files/Schematics/ARMproSCH.pdf
http://www.coridiumcorp.com/files/Schematics/superSCH.pdf
http://www.coridiumcorp.com/files/Schematics/superSCH.pdf
http://www.coridiumcorp.com/files/Schematics/superSCH4.pdf
http://www.coridiumcorp.com/files/Schematics/Dongle2.pdf
http://www.coridiumcorp.com/files/Schematics/ARMweb.pdf
http://www.coridiumcorp.com/files/Schematics/ARMweb3.pdf
http://www.coridiumcorp.com/files/Schematics/DATAlog.PDF
http://www.coridiumcorp.com/files/Schematics/DINbase.pdf
http://www.coridiumcorp.com/files/Schematics/DINusb.pdf
http://www.coridiumcorp.com/files/Schematics/DINeth.pdf
http://www.coridium.us/files/Schematics/XBsensor.pdf
http://www.coridiumcorp.com/files/Schematics/Wireless.pdf
http://www.coridiumcorp.com/files/Schematics/ARMmite3.DXF
http://www.coridiumcorp.com/files/Schematics/DATAlog.DXF
http://www.coridiumcorp.com/files/Schematics/ARMpro.DXF
http://www.coridiumcorp.com/files/Schematics/ARMpro.DXF
http://www.coridiumcorp.com/files/Schematics/ARMweb4.DXF
http://www.coridiumcorp.com/files/Schematics/superpro5.DXF
http://www.coridiumcorp.com/files/Schematics/XBsensor.DXF
http://www.abviewer.com/viewer.html
http://www.abviewer.com/viewer.html,

Serial Configuration

 Though we recommend using BASICtools or TclTerm to talk to Coridium ARM products, here are settings
for other terminal programs.

 Any program on the PC that can communicate with a serial port can send or receive data to the ARM. This
would include MSCOMM and Visual BASIC. Also various C's including GCC. Other options include Perl or
Tcl scripts.

 However these programs must be able to control the DTR and RTS lines under user control. If they cannot
refer to the next section. Programs that cannot include Matlab, Hyperterm and Teraterm.

 is the source for a Tcl program that operates as a terminal emulator for Coridium products. You can use it
if you have access to any of the GPL Tcl interpreters, or a compiled version is available on the Coridium
Support page. The sources are also installed with BASICtools.

Baudrate

 19.2 Kbaud, 8 bit, No Parity, 1 stop bit. These settings are controlled by BASICtools , any settings in the
Device Manager are IGNORRED.

End of Line

 expects a LF (line feed),

 CR is currently ignored.

Voltage Levels -- ARMexpress ONLY

 /SOUT, /SIN and ATN (pins 1,2,3) will accept either TTL or RS-232 levels. ATN when high resets the ARM,
and ATN should not be allowed to float. It should either be connected directly to DTR, or some TTL signal that
is LOW or Ground. The /SOUT driver relies on either /SIN or ATN being low to generate the low going voltage.
This allows for full-duplex serial operation.

When BASICtools appears to be deaf

 There are cases where the USB driver and BASICtools get out of sync. This includes when the board is
disconnected from the USB port, and sometimes when the serial configuration is changed. In these cases it
may be necessary to exit BASICtools and then restart it.

TclTerm configuration settings

 The configuration of BASICtools is saved in a file BASICtools.ini. It is written when either it does not exist
(when first installed) or when the configuration is changed by the user. This file is a Tcl source which may be
edited by the user. If it becomes corrupt, delete the file and the default configuration will be restored.

The file can be found in %appdata%\coridium directory

Page 416

SPI,Microwire

The Serial Peripheral Interface Bus or SPI bus is a very loose standard for controlling almost any digital
electronics that accepts a clocked serial stream of bits. A nearly identical standard called "Microwire" is a
restricted subset of SPI.

SPI is cheap, in that it does not take up much space on an integrated circuit, and effectively multiplies the
pins, the expensive part of the IC. It can also be implemented in software with a few standard IO pins of a
microcontroller.

Many real digital systems have peripherals that need to exist, but need not be fast. The advantage of a serial
bus is that it minimizes the number of conductors, pins, and the size of the package of an integrated circuit.
This reduces the cost of making, assembling and testing the electronics.

A serial peripheral bus is the most flexible choice when many different types of serial peripherals must be
present, and there is a single controller. It operates in full duplex (sending and receiving at the same time),
making it an excellent choice for some data transmission systems.

In operation, there is a clock, a "data in", a "data out", and a "chip select" for each integrated circuit that is
to be controlled. Almost any serial digital device can be controlled with this combination of signals.

SPI signals are named as follows:

 SCLK - serial clock
 MISO - master input, slave output
 MOSI - master output, slave input
 CS - chip select (optional, usually inverted polarity)

Most often, data goes into an SPI peripheral when the clock goes low, and comes out when the clock goes
high. Usually, a peripheral is selected when chip select is low. Most devices have outputs that become high
impedance (switched-off) when the device is not selected. This arrangement permits several devices to talk
to a single input. Clock speeds range from several thousand clocks per second (usually for software-based
implementations), to several million per second.

Most SPI implementations clock data out of the device as data is clocked in. Some devices use that trait to
implement an efficient, high-speed full-duplex data stream for applications such as digital audio, digital signal
processing, or full-duplex telecommunications channels.

On many devices, the "clocked-out" data is the data last used to program the device. Read-back is a helpful
built-in-self-test, often used for high-reliability systems such as avionics or medical systems.

In practice, many devices have exceptions. Some read data as the clock goes up (leading edge), others
read as it goes down (falling edge). Writing is almost always on clock movement that goes the opposite
direction of reading. Some devices have two clocks, one to "capture" or "display" data, and another to clock it
into the device. In practice, many of these "capture clocks" can be run from the chip select. Chip selects can
be either selected high, or selected low. Many devices are designed to be daisy-chained into long chains of
identical devices.

SPI looks at first like a non-standard. However, many programmers that develop embedded systems have a
software module somewhere in their past that drives such a bus from a few general-purpose I/O pins, often
with the ability to run different clock polarities, select polarities and clock edges for different devices.

The interface is also easy to implement for bench test equipment. For example, the classic way to implement
an SPI interface from a personal computer to custom electronics is via a custom cable to the PC's parallel
printer port. The parallel port generates and reads standard TTL logic voltages; +5V is high, ground is low. A
number of helpful people have developed drivers to give access to this port in the most restrictive operating
systems, such as Windows NT (see below), from the least likely environments, such as Visual Basic.

Page 417

http://en.wikipedia.org/wiki/Microwire
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Serial_bus
http://en.wikipedia.org/wiki/Serial_bus
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Impedance
http://en.wikipedia.org/wiki/Rising_edge
http://en.wikipedia.org/w/index.php?title=Falling_edge&action=edit
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Transistor-transistor_logic

SuperPRO Pin Description

PROplus Pin Description

The SuperPRO is footprint and pin compatible with the Arduino PRO. In addition it has an onboard 5V
regulator so it is compatible with 5V shield boards. The SuperPRO also has an RTC crystal and provision for
a battery.

The PROplus has only a 3.3V power supply and does not include the RTC crystal. Both boards can be used
with 5V TTL signals.

BASIC or C programs can be downloaded using the installed test connector using the USB dongle contained
in Coridium's evaluation kit or using the SparkFun USB Basic Breakout board or FTDI cable from Digikey.
More details on these connections here.

Digital IO connections -- rev 5 or later

The rev 5 adds a parallel connection for pins that are on 0.1" centers. This artwork is also shared with the
PROplus version of the board.

The SuperPRO uses an LPC1756 and has 5V and 3.3V supplies.

The simpler PROplus uses an LPC1751 and has only the 3.3V supply.

Port pins can be controlled with the P0..P4 keywords . and with firmware 8.12 or later the original IO,
IN, OUT.. keywords . More details on the GPIOs can be found in the NXP User Manual.

Below is a diagram of the pins, note it has been rotated 90 degrees to make it easier to read,

Page 418

http://www.sparkfun.com/commerce/product_info.php?products_id=8772
http://search.digikey.com/us/en/products/TTL-232R-5V/768-1028-ND/2003493

All boards rev 5 and later share the SAME pinouts, except for the location of the load-C jumper. To use
IO(x) with x greater than 32, firmware 8.11 or later has to be used. IO(32) is the equivalent of P1(0) and
can be accessed either way in the latest firmware, in earlier versions P1(0) was the way to access that
pin.

Special purpose pins

Page 419

RESET pin starts the ARM program if the BOOT(P2.10) pin is high. If you use P2.10 as an input you
MUST make sure it is in the high state when RESET is asserted, otherwise your program will NOT
start.

The LPC1756 supports a number of dedicated functions. Those include 4 UARTs, USB, 2 SSPs, 1
SPI, 2 CAN, 2 I2C, I2S, 2 multi-channel PWMs, Quadrature Encoder, dedicated motor control PWM,
interrupts, timer counter capture and match.

In addition most can be configured with pull-ups and default to pull-ups following reset.

Details can be found in NXP's User manual.

UARTs are enabled by calling BAUD(x) for x=0 to 3. UART0 is enabled by default as the programming
debug connection. The pin assignment BASIC uses is in the following table (you can change the
settings by changing the PINSEL registers, details in the NXP User Manual)

UART BASIC NXP UART
RXD(0) IO(3) P0(3) / AD(6) UART0
TXD(0) IO(2) P0(2) / AD(7)
RXD(1) IO(65) P2(1) UART1
TXD(1) IO(64) P2(0)
RXD(2) IO(73) P2(9) UART2
TXD(2) IO(72) P2(8)
RXD(3) IO(157) P4(29) UART3
TXD(3) IO(156) P4(28)

Analog connections

4 A/D converters are readily available, Analog 2-4. 2 more are available, but share the pins with UART0 --
what was NXP thinking, I have no idea.

1 10 bit DAC is available shared with AD(3) available on the SuperPRO (not on PROplus)

On reset or power up the AD pins are configured by software as AD inputs. To change those to
digital IOs, the user must write to the appropriate PINSEL register, or with version 8.11 firmware or
later you can change it to an IO by accessing the corresponding IO pin in the following table.

AD BASIC NXP
AD(2) IO(25) P0(25),DACOUT
AD(3) IO(26) P0(26)
AD(4) IO(62) P1(30)
AD(5) IO(63) P1(31)
AD(6) IO(3) RXD(0)/P0(3) / AD(6)
AD(7) IO(2) TXD(0)/P0(2) / AD(7)

The LPC1756 does support an external reference for the A/D converters, but to use the Arduino

Page 420

AREF pin a jumper is required (details on the schematic)

The A/D input requires a drive impedance of 7.5K or less (see NXP LPC175x spec sheet). We've
also found a 100 to 1000 pF cap from AD input to GND can remove high frequency noise affecting
high order bits in the converter.

Analog Isolation

The rev 6 and 7 boards isolate both GND and power for the analog section using ferrite beads.

to add isolation to rev 4/5 boards -

The LPC17xx series chips AD converter are sensitive to high frequency noise on the analog GND
(Vssa) or on the AD inputs themselves. A symptom that will show up is bits in any bit position
turned on/off when the conversion is done. This makes it hard to average out, but conversion can be
voted on, choosing 2/3 conversions that agree within a few bits. The occurrence of these errors is in
less than 1% of the conversions, unless your setup is very noisy.

Another option is to change the analog GND connection on the board. Do this by cutting the trace
on the back side between GND under the crystal and the GND connected to Vssa (shown on the
picture below)

Then connect digital GND to analog GND using a ferrite bead, a convenient place to do this is on the
front side as shown below.

Page 421

Pin limitations

P0.29 and P0.30 direction control must be done in parallel, they can be both outputs or both inputs, but
not mixed. With firmware 8.11 or later, changing the direction of either P0.29 or P0.30 will change the
other pin.

Power connections -- SuperPRO

The board is shipped with a 2mm power jack compatible with a JST PHR/S2B or SparkFun PRT8671
or various battery packs from SparkFun.

Pads for a Cui PJ-002A or SparkFun PRT-119 power connector are available in the lower left hand
corner.

For both battery and 6V input, 2 pin 0.1" spaced holes are available for wires or headers. When using
the battery connector, total current draw for the board must be limited to 200mA. If you want to use
more current, you should install a jumper around the D2 diode (holes are available above D2).

Diode steering allows power to be supplied from a barrel connector from a 6V unregulated source, 5V USB
test connector, or the battery connector. Because of the Schottky diodes, all 3 power sources can be
connected simultaneously. If you are using an unregulated wall transformer, you must check the open
circuit voltage and it MUST be less than 12V.

When the 6V source is used, 5V Arduino shields can be powered from the SuperPRO.

Page 422

http://search.digikey.com/scripts/dksearch/dksus.dll?pname&site=us;lang =en&wt.mc_id=Dxn_US_T091_Catlink;name=455-1165-ND
http://www.sparkfun.com/commerce/product_info.php?products_id=8671
http://www.sparkfun.com/commerce/product_info.php?products_id=119

The schematic below describes this circuit on the SuperPRO

Power connections -- PROplus

The board is shipped with a 2mm power jack compatible with a JST PHR/S2B or SparkFun
PRT8671 or various battery packs from SparkFun.

Pads for a Cui PJ-002A or SparkFun PRT-119 power connector are available in the lower left hand
corner.

For both battery and 6V input, 2 pin 0.1" spaced holes are available for wires or headers. When
using the battery connector, total current draw for the board must be limited to 200mA. If you want
to use more current, you should install a jumper around the D2 diode (holes are available above D2).

Diode steering allows power to be supplied from a barrel connector from a 6V unregulated source, 5V
USB test connector, 5V from a shield or the battery connector. Because of the Schottky diodes, all 3
power sources can be connected simultaneously. If you are using an unregulated wall transformer, you
must check the open circuit voltage and it MUST be less than 12V.

The PROplus only has the 3.3V regulator, so it cannot supply power to a 5V shields.

The schematic below describes this circuit on the PROplus

Page 423

http://search.digikey.com/scripts/dksearch/dksus.dll?pname&site=us;lang =en&wt.mc_id=Dxn_US_T091_Catlink;name=455-1165-ND
http://www.sparkfun.com/commerce/product_info.php?products_id=8671
http://www.sparkfun.com/commerce/product_info.php?products_id=8671
http://www.sparkfun.com/commerce/product_info.php?products_id=119

The full schematic can be seen here and for rev 8

Power connections details

Page 424

http://www.coridiumcorp.com/files/Schematics/superSCH.pdf
http://www.coridiumcorp.com/files/Schematics/Super8sch.pdf

The 3.3V regulator can supply 50 mA, with most being used by the LPC2103. The 3.3V connection next
to RESn on the lower power connector is only connected if the shorting pads are shorted (NOT the factory
default).

The analog GND should be used to connect to the GND of analog inputs. Digital and Analog GNDs are
connected together with a small trace, but to minimize noise you should use the analog GND only for
analog signals.

Jumpers and test connector for Program Download

The USB Dongle from Coridium will supply 5V from the USB to power the ARMmite PRO. It also controls
the RESET and BOOT(P2.10) signals to automatically load C or BASIC programs using MakeItC or
BASICtools. Remember, if you load a C program, it will erase the BASIC firmware and you will not be
able to load BASIC programs after that.

When using the SparkFun FTDI Basic Breakout Board, a limited amount of power can be supplied from
the BBB, but this is limited to 50 mA and after diode drops, its about 2.8V to the LPC2103. In practice
this will run, but it is outside the part specifications, so it should be limited in use.

Page 425

Also with the SparkFun FTDI Basic Breakout Board to load a C program, the LOAD C jumper needs to be
installed, then removed to run the program. BASIC programs can be loaded and controlled using the
SparkFun board, with no additional steps/jumpers.

 PROplus
 SuperPRO

An alternative is to use a 2 pin header with a shorting block (pictured below)

Real Time Clock Oscillator

The RTC oscillator of the LPC17xx parts has been resolved. The first generation parts which were shipped
in early 2011 had an unreliable oscillator and this has been corrected by NXP.

A 32 KHz crystal and diode for battery backup with an optional ML2020 rechargeable Li battery.

A Panasonic ML2020H rechargeable battery may be added to keep the real time clock running when
power is removed. The battery is mounted on the back of the board as shown below. The VL2020/HFN
will also work, though it is more expensive and has less power.

Page 426

USB connector option for power and SPI Flash option

The rev 6/7 boards add pads for an optional SPI Serial Flash (note pin 1 location). Also pads for a USB
mini-B connector have been added, this is intended primarily to supply power, and the data lines are
connected to pads. These options can be installed at Coridium for orders of 10 boards or more. Contact
sales@coridiumcorp.com for details.

Page 427

mailto:sales@coridiumcorp.com

Main Clock Crystal option

You can add a 12 MHz crystal with 39pf 0603 load caps, for use as a more accurate clock source.
Locations marked below

Page 428

http://www.digikey.com/product-detail/en/CA-301 12.0000M-C:PBFREE/SER3424-ND/1022143

Timing

The oscillator
The ARMexpress uses a ceramic resonator for the timing element. It is accurate for 1%. It is used for timing
of operations of SERIN, SEROUT, OWIN, OWOUT, PULSEIN, PULSEOUT, and COUNT.

Other operations such as I2CIN, I2COUT, SPIIN, SPIOUT, SHIFTIN, SHIFTOUT, and PWM are "bit-banged"
loops that are calibrated to the speed of the CPU.

The real time clock
The ARMexpress, ARMexpress LITE, or ARMmite wireless use the CPU clock based on the ceramic
resonator for the timing element. It is accurate for 1%.

The ARMmite and ARMweb use a 32KHz crystal which is much more accurate for timing of SECONDS,
MINUTES, HOURS, DAYS, MONTH and YEAR. It is accurate to 100ppm. And on the ARMmite or
ARMweb it can be kept running with a battery.

Interrupts

The serial port connection through the USB uses interrupts for all products. The service routines for these
actions have been minimized so that the user program is only interrupted for TBD microseconds. The
ARMweb also uses a 10 msec timer interrupt. With version 7.09 firmware and later interrupts on 2 pins or
timer are available to the user BASIC program.

Operations that require accurate timing will disable the interrupts during that critical period. These operations
include OWIN, OWOUT, SERIN and SEROUT. Other operations that would be negatively impacted by an
interrupt also disable the interrupt for a period of time. Those include PULSIN, PULSOUT, PWM, and
RCTIME.

Interrupts and User code
When the ARMexpress receives serial input it will interrupt to copy data into its buffer. This will cause a
small delay in the users program. In most cases this is not noticeable, but may be where user is timing with
TIMER.

User code can cause the serial port to be deaf when running long operations such as PWM. In normal
operation this should not be a problem.

AD timing (ARMmite, ARMmite Wireless, ARMexpress LITE, and ARMweb)

The analog inputs can do a conversion in 11 uSec.

Page 429

General Interfacing

Both the ARMexpress and the ARMmite can be directly connected to 5V TTL devices. The output voltage
for these ARM devices ranges from 0.4V to 2.9V when driving up-to 4mA of current. Most TTL devices will
recognize these as valid logic levels (normally defined to be 0.8 and 2.0V)

Inputs

The ARMexpress and ARMmite may also be directly connected to 5V TTL outputs. If they are TTL
compatible the voltage levels of the TTL output would normally be (0.4 and 3.4V), though they may go higher.
The inputs for these ARM devices are 5V compatible.

Tying to Supply lines

The ARMexpress and ARMmite inputs may be connected directly to a GND pin, but if connecting to a fixed
voltage supply, then a 1K or greater resistor in series is recommended. This is the same recommendation for
any TTL compatible device. The reason being is that the 5V supply may exceed the 5V at times, or if that
voltage is available before the power supply to the CPU, large currents may flow through the protection diodes
in the CPU.

Interfacing to higher voltages

A resistor divider may be used to connect the ARMexpress and ARMmite to voltages that go higher than 5V.
The picture below shows a connection appropriate for a 24V signal. A 100K resistor is connected from the
input to IO(11) and then an 11K resistor connects IO(11) to GND. This will divide that 24V input to vary
between 0 and 2.4V.

This resistor divider divides the 24V by 10 and also limits the current if that 24V goes higher. The circuit
below shows schematically the connection that was made.

Page 430

The resistors can be varied to handle different voltages. If the voltage to be sensed is susceptible to large
spikes a 3V Zener diode can be connected in parallel with R2 to further protect the ARMmite IO.

Opto-Isolator

Another way to sense large voltages and to isolate the ARMmite from those voltages is to use an
opto-isolator. These devices consist of an LED and a photo-transistor in a single package. They can provide
isolation of 1000s of Volts. Below is a sample circuit. The D2 optional diode should be used if the isolated
voltage to be sensed is an AC voltage. The value of R1 should be chosen depending on the Opto-isolator
spec, with the current through the opto-isolator diode typically being 10 mA.

Driving Transistors

The ARMexpress outputs are rated for 4mA, when more is required a common 2N3904 transistor can be
used for 100-200 mA. The base of the transistor is driven from an IO with a series resistor. When the IO is
high the transistor is turned on.

Driving Relays

When higher currents or voltage are involved a relay can be used. For mechanical relays a driving transistor
with a catch diode are required. The circuit starts as the above transistor circuit, which when on can either
close or open the relay contacts. When it turns off, current continues to flow in the coil of the relay as the

Page 431

magnetic field collapses, this current needs to go somewhere, that's what the catch diode provides is a path
for that current to flow back into the supply of the relay.

Page 432

USB use

 During programming BASICtools is used to load the users ARMbasic program. But once the user's
ARMbasic program is running the USB port may be used to communicate data back to the PC.

General Info

 The USB port is configured as a USB slave device and emulates a serial port for the PC. Drivers are also
available from FTDI for the Mac or Linux (FTDI 232RL running in serial emulation mode, normally VCP type
driver).

PC side programs

 Any program on the PC that can communicate with a serial port can send or receive data to the
ARMexpress eval PCB or the ARMmite. This would include MSCOMM and Visual BASIC. Also various C's
including GCC. Other options include Perl or Tcl scripts.

 However these programs must be able to control the DTR and RTS lines under user control. If they cannot
refer to the next section. Programs that cannot include Teraterm, Hyperterm and MatLab .

 The TclTerm.tcl is the source for a Tcl program that operates as a terminal emulator for Coridium products.
You can use it if you have access to any of the GPL Tcl interpreters, or a compiled version is available on the
Coridium Support page. The sources are also installed with MakeItC and BASICtools.

Baudrate

 Baudrate will remain at 19.2Kb, unless changed by the user program which can be done with

#include <SERIAL.bas>
BAUD0 (newrate)

 Output of Data to PC

 The ARMbasic program can use PRINT, or TXD0

Input of Data from PC

 An ARMbasic program should use RXD0. These routines will return -1 if no data is available. This allow
the users program to continue doing other tasks, or the user program can loop waiting for input on RXD0.

 DEBUGIN in a user program will wait for data, even if that is for ever. It is not a good practice to use this
function for sending data back to the PC. Its operation is recommended for user interaction with programs
during the development stage, while using BASICtools.

Page 433

USB use with Linux, Hyperterm, TeraTerm

General Info

 The ARMmite and ARMexpress use the DTR and RTS serial control lines to control programming and reset
for the device. The state chosen allows the ARMmite/express to run and be reset by the push button while
idle (i.e. no serial program running).

PC side programs

 Programs on the PC such as Tcl, MSCOMM and GCC allow the control lines to be controlled by the user.
But some pre-compiled programs do not allow this control, such as HyperTerminal, TeraTerm, and some
Linux apps. This page describes the steps to allow these programs to operate.

Useful debugging tool

 Before starting its useful to load a program into the ARMmite/express that will pulse the LED and also
continuously send some data out the serial port. Here is one that works well...

Download the latest BASICtools and Tclterm

 In order to be able to communicate with the ARMmite/express after the control lines have been changed,
make sure you are running the latest TclTerm. Versions 1.6 and later have this support.

http://www.coridiumcorp.com/files/setupBASIC.exe

 Next, the driver must be changed for the USB serial device. The FTDI D2XX driver must be used. Download
it from the FTDI website.

http://www.ftdichip.com/Drivers/D2XX.htm

Page 434

http://www.coridiumcorp.com/files/setupBASIC.exe
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.coridiumcorp.com/files/setupBASIC.exe
http://www.ftdichip.com/Drivers/D2XX.htm

Choose the proper version for your operating system, and download and install the driver. The installation
executable may be used, and there are instructions in the Installation Guides on that page.

Configuration Utility

 Next the settings of the serial control lines need to be changed, this requires the MProg utility from FTDI.
Download and install this program.

http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe

Next download the data files for configuration of the ARMmite or ARMexpress eval PCBs. Unzip these files
and store in a convenient directory (such as C:/Program Files/MProg 3.0a/Templates)

http://www.coridiumcorp.com/files/USBconfig.zip

Setup ARMmite/ARMexpress for MatLab, HyperTerminal, or TeraTerm

 Run the MProg utility. Load the serial or legacy File version. And then reprogram the FTDI chip. ONLY
have 1 ARMmite or ARMexpress plugged in at time when you perform this operation.

Exit this program and close any serial programs such as BASICtools. For this change to take effect, the
ARMmite/express must be disconnected from the PC and reconnected.

Now the ARMmite/express will be idle until the serial port is open, when Hyperterminal, or TeraTerm is run.
Then after those programs are run, to start your BASIC or C program press the RESET pushbutton on the
ARMmite/express.

Page 435

http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe
http://www.coridiumcorp.com/files/USBconfig.zip
http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe
http://www.coridiumcorp.com/files/USBconfig.zip

Change the BASICtools settings for the reconfigured ARMmite/ARMexpress

 In order to be able to change the BASIC program, you will still need to use BASICtools, but it will have to
be configured to use the new control line configuration (DTR and RTS inverted).

Page 436

USB use with MatLab

General Info

 The ARMmite and ARMexpress use the DTR and RTS serial control lines to control programming and reset
for the device. The state chosen allows the ARMmite/express to run and be reset by the push button while
idle (i.e. no serial program running).

 MatLab holds DTR high, but RTS low when it opens a serial port.

Useful debugging tool

 Before starting its useful to load a program into the ARMmite/express that will pulse the LED and also
continuously send some data out the serial port. Here is one that works well...

Download the latest BASICtools and Tclterm

 In order to be able to communicate with the ARMmite/express after the control lines have been changed,
make sure you are running the latest BASICtools. Versions 4.1 and later have support for MatLab.

http://www.coridiumcorp.com/files/setupBASIC.exe

 Next, the driver must be changed for the USB serial device. The FTDI D2XX driver must be used. Download
it from the FTDI website.

http://www.ftdichip.com/Drivers/D2XX.htm

Choose the proper version for your operating system, and download and install the driver. The installation
executable may be used, and there are instructions in the FTDI Installation Guides on that page.

Configuration Utility

Page 437

http://www.coridiumcorp.com/files/setupBASIC.exe
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.coridiumcorp.com/files/setupBASIC.exe
http://www.ftdichip.com/Drivers/D2XX.htm

 Next the settings of the serial control lines need to be changed, this requires the MProg utility from FTDI.
Download and install this program.

http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe

Next download the data files for configuration of the ARMmite or ARMexpress eval PCBs. Unzip these files
and store in a convenient directory (such as C:/Program Files/MProg 3.0a/Templates)

http://www.coridiumcorp.com/files/USBconfig.zip

Setup ARMmite/ARMexpress for MatLab

 Run the MProg utility. Load the matlab File version in. And then reprogram the FTDI chip. ONLY have 1
ARMmite or ARMexpress plugged in at time when you perform this operation.

Exit this program and close any serial programs such as BASICtools. For this change to take effect, the
ARMmite/express must be disconnected from the PC and reconnected.

Now the ARMmite/express will be idle until the MatLab serial port is open. Then after those programs are
run, to start your BASIC or C program press the RESET pushbutton on the ARMmite/express.

Change the BASICtools settings for the reconfigured ARMmite/ARMexpress

 In order to be able to change the BASIC program, you will still need to use BASICtools, but it will have to
be configured to use the new control line configuration (DTR and RTS inverted).

Page 438

http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe
http://www.coridiumcorp.com/files/USBconfig.zip
http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe
http://www.coridiumcorp.com/files/USBconfig.zip

 Check operation with MatLab

Page 439

Using the I2C Bus

The physical I2C bus
This is just two wires, called SCL and SDA. SCL is the clock line. It is used to synchronize all data transfers
over the I2C bus. SDA is the data line. The SCL & SDA lines are connected to all devices on the I2C bus.
There needs to be a third wire which is just the ground or 0 volts. There may also be a 5volt wire is power is
being distributed to the devices. Both SCL and SDA lines are "open drain" drivers. What this means is that
the chip can drive its output low, but it cannot drive it high. For the line to be able to go high you must provide
pull-up resistors to the 5v supply. There should be a resistor from the SCL line to the 5v line and another from
the SDA line to the 5v line. You only need one set of pull-up resistors for the whole I2C bus, not for each
device, as illustrated below:

The value of the resistors should be from 1.8K (1800 ohms) to 4.7k (4700 ohms). It depends on the length of
the I2C bus, the longer the bus, the smaller value should be used. If the value is too large, the rise time of the
signals will be too slow and the bus may not work properly. If the resistors are missing, the SCL and SDA
lines will always be low - nearly 0 volts - and the I2C bus will not work.

Masters and Slaves
The devices on the I2C bus are either masters or slaves. The ARMexpress as a master is always the device
that drives the SCL clock line. The slaves are the devices that respond to the master. A slave cannot initiate
a transfer over the I2C bus, only a master can do that. There can be, and usually are, multiple slaves on the
I2C bus, however there is normally only one master. ARMexpress does not support multiple masters. Slaves
will never initiate a transfer. Both master and slave can transfer data over the I2C bus, but that transfer is
always controlled by the master.

The I2C Physical Protocol
When the ARMexpress wishes to talk to a slave it begins by issuing a start sequence on the I2C bus. A start
sequence is one of two special sequences defined for the I2C bus, the other being the stop sequence. The
start sequence and stop sequence are special in that these are the only places where the SDA (data line) is
allowed to change while the SCL (clock line) is high. When data is being transferred, SDA must remain
stable and not change whilst SCL is high. The start and stop sequences mark the beginning and end of a
transaction with the slave device.

Data is transferred in sequences of 8 bits. The bits are placed on the SDA line starting with the MSB (Most
Significant Bit). The SCL line is then pulsed high, then low. Remember that the chip cannot really drive the
line high, it simply "lets go" of it and the resistor actually pulls it high. For every 8 bits transferred, the device
receiving the data sends back an acknowledge bit, so there are actually 9 SCL clock pulses to transfer each
8 bit byte of data. If the receiving device sends back a low ACK bit, then it has received the data and is ready
to accept another byte. If it sends back a high then it is indicating it cannot accept any further data and the

Page 440

master should terminate the transfer by sending a stop sequence.

How fast?
ARMexpress runs in Fast mode at approximately 380 KHz.

I2C Device Addressing
All I2C addresses are either 7 bits or 10 bits. The use of 10 bit addresses is rare and is not covered here. All
of our modules and the common chips you will use will have 7 bit addresses. This means that you can have
up to 128 devices on the I2C bus, since a 7bit number can be from 0 to 127. When sending out the 7 bit
address, we still always send 8 bits. The extra bit is used to inform the slave if the master is writing to it or
reading from it. If the bit is zero are master is writing to the slave. If the bit is 1 the master is reading from the
slave. The 7 bit address is placed in the upper 7 bits of the byte and the Read/Write (R/W) bit is in the LSB
(Least Significant Bit).

The placement of the 7 bit address in the upper 7 bits of the byte is a source of confusion for the newcomer.
It means that to write to address 21, you must actually send out 42 which is 21 moved over by 1 bit. It is
probably easier to think of the I2C bus addresses as 8 bit addresses, with even addresses as write only, and
the odd addresses as the read address for the same device.

The I2C Software Protocol
The first thing that will happen is that the master will send out a start sequence. This will alert all the slave
devices on the bus that a transaction is starting and they should listen in incase it is for them. Next the
master will send out the device address. The slave that matches this address will continue with the
transaction, any others will ignore the rest of this transaction and wait for the next. Having addressed the
slave device the master must now send out the internal location or register number inside the slave that it
wishes to write to or read from. This number is obviously dependant on what the slave actually is and how
many internal registers it has. Some very simple devices do not have any, but most do. Having sent the I2C
address and the internal register address the master can now send the data byte (or bytes, it doesn't have to
be just one). The master can continue to send data bytes to the slave and these will normally be placed in
the following registers because the slave will automatically increment the internal register address after each
byte. When the master has finished writing all data to the slave, it sends a stop sequence which completes
the transaction. So to write to a slave device:
1. Send a start sequence
2. Send the I2C address of the slave with the R/W bit low (even address)
3. Send the internal register number you want to write to
4. Send the data byte
5. [Optionally, send any further data bytes]
6. Send the stop sequence.

Reading from the Slave
This is a little more complicated - but not too much more. Before reading data from the slave device, you
must tell it which of its internal addresses you want to read. So a read of the slave actually starts off by
writing to it. This is the same as when you want to write to it: You send the start sequence, the I2C address
of the slave with the R/W bit low (even address) and the internal register number you want to write to. Now
you send another start sequence (sometimes called a restart) and the I2C address again - this time with the
read bit set. You then read as many data bytes as you wish and terminate the transaction with a stop
sequence. So to read the compass bearing as a byte from the CMPS03 module:
1. Send a start sequence
2. Send the I2C address of the slave with the R/W bit low (even address)
3. Send the internal register number you want to read from.
4. Send a start sequence again (repeated start)

Page 441

2. Send the I2C address of the slave with the R/W bit high (odd address)
6. Read data byte from the slave device. (may be repeated depending on the slave capabilities)
7. Send the stop sequence.

The bit sequence will look like this:

Wait a moment
The ARMexpress does not support slaves that use clock stretching. The result is that erroneous data is read
from the slave. Beware! Luckily this function is relatively rare these days.

Example Master Code

#include <I2C.bas>
 '...

' test the EEPROM 24LC02 on pins 0 == SDA and 1 == SCL
shortMessage(0)= 0 ' address into EEPROM

present = I2COUT (0, 1, 0xA0, 8, shortMessage)
if present = 0 then print "NO i2c device ***"

WAIT(10) ' allow time for data to be written
I2CIN(0, 1, 0xA0, 1,shortMessage, 7, shortResponse)

' now do I2CIN as separate operations

I2COUT (0, 1, 0xA0, 1, shortMessage) ' send just the address and offset
I2CIN(0, 1, 0xA0, -1,"", 7, shortResponse)

Easy isn't it?

The definitive specs on the I2C bus can be found on the Philips website. Its currently here but if its moved
you'll find it easily be googleing on "i2c bus specification".

Page 442

http://www.semiconductors.philips.com/acrobat/literature/9398/39340011.pdf

ARMexpress LITE Pin Diagram

The ARMexpress LITE is pin compatible with the Parallax BASIC Stamp. BASIC Stamp is a registered
trademark of Parallax Inc.

/SOUT 1 Serial Output, RS-232 compatible (active low)

/SIN 2 Serial Input, RS-232 compatible (active low)

ATN 3 connect to DTR with RS-232, when HIGH reset the Node (active high)

/RES 22 TTL level RESET (open collector with 2.7K pull-up) (active low)

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7
IO8
IO9
IO10
IO11
IO12
IO13

5
6
7
8
9
10
11
12
13
14
15
16
17
18

PWM3

PWM1, RXD1
PWM2, TXD1
AD0
AD2
AD5
AD1
AD6
AD7
PWM7

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant - use limiting resistor when connecting to a 5V supply

EINT2

Page 443

IO14
IO15

19
20

PWM5
PWM8

EINT0

GND 4,23 Ground (0V)

VDD 24 Power 5-12V input power

Alt-VDD 21 Alternate 5V input power (for Parallax compatibility)
DO NOT exceed 5V on this pin
connection to pin 24 is preferred
this pin is pulled low during download of a C program

Dual Use AD pins

On reset or power up the AD pins are configured as digital IOs on the ARMexpress LITE. When the
BASIC accesses these pins they are changed to analog inputs. After that they will remain analog inputs
until the next reset or power up.

PWM pins

All pins can be used for the software PWM function, and 6 pins can be used for the hardware driven
HWPWM function (HWPWM channels 4 and 6 are not connected).

Page 444

ARMexpress Pin Diagram

The ARMexpress is pin compatible with the Parallax BASIC Stamp. BASIC Stamp is a registered
trademark of Parallax Inc.

/SOUT 1 Serial Output, RS-232 compatible (active low)

/SIN 2 Serial Input, RS-232 compatible (active low)

ATN 3 connect to DTR with RS-232, when HIGH reset the Node (active high)

/RES 22 TTL level RESET (open collector with 2.7K pull-up) (active low)

IO0
IO1
IO2
IO3
IO4
IO51

IO61

IO7
IO8
IO9
IO10
IO11
IO12
IO13
IO14
IO15

5
6
7
8
9
10

11

12
13
14
15
16
17
18
19
20

note 1
note 1

EINT2
EINT0

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant - use limiting resistor when connecting to a 5V supply

Page 445

GND 4,23 Ground (0V)

VDD 24 Power 5-12V input power

Alt-VDD 21 Alternate 5V input power (for Parallax compatibility)
DO NOT exceed 5V on this pin
connection to pin 24 is preferred
this pin is pulled low during download of a C program

1These pins (IO5 an IO6) are open-drain, when configured as outputs can only pull down.

Page 446

ARMmite Pin Description

24 pins available to the user, 8 of which can be analog inputs

IO(0)
IO(1)
IO(2)
IO(3)
IO(4)
IO(5)
IO(6)
IO(7)
IO(8)
IO(9)
IO(10)
IO(11)
IO(12)
IO(13)
IO(14)
IO(15)

P0(9)
P0(8)
P0(30)
P0(21)
P0(20)
P0(29)
P0(4)
P0(5)
P0(6)
P0(7)
P0(13)
P0(19)
P0(18)
P0(17)
P0(16)
P0(15)

RXD(1)
TXD(1)

EINT0
EINT2

PWM1
PWM2
PWM3
PWM4
PWM5

PWM6
PWM7
PWM8

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant

- use limiting resistor when connecting to a 5V supply

IO(15) connected to LED

AD(0)
AD(1)
AD(2)
AD(3)
AD(4)
AD(5)
AD(6)
AD(7)

P0(22)
P0(23)
P0(24)
P0(10)
P0(11)
P0(12)
P0(25)
P0(26)

IO(16)
IO(17)
IO(18)
IO(19)
IO(20)
IO(21)
IO(22)
IO(23)

10 bit A/D inputs

may also be used as digital Input/Outputs IO(16-23)

-- user controlled

when used as analog lines,

voltage levels should not exceed 3.3V

Dual Use AD pins

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user
must individually specify a control direction using INPUT(x), OUTPUT(x), DIR(x), or IO(x) commands.
After that they will remain digital IOs until the next reset or power up.

PWM pins

All pins can be used for the software PWM function, and 8 pins can be used for the hardware driven
HWPWM function.

Battery Real Time Clock

The ARMmite board is designed to accept a Panasonic ML2020/H1C rechargeable Lithium battery at

Page 447

position BT1. This battery powers the real time clock of the LPC2103. The contents of RAM is not kept
alive while running on battery, and the CPU restarts the user program in Flash when power is restored.
This battery is designed to maintain power for a few days without power, and will recharge fully in about 1
day.

Power connection

Power when not being supplied by a USB connection uses a 2.1mm barrel connector (Cui
PJ-002A). Diodes allow both USB and separate power to be connected simultaneously. If you are using
an unregulated wall transformer, you must check the open circuit voltage and it MUST be less than 12V.

Pin spacing

The spacing in the prototype area is 0.1" and the terminal strip row on the right side is designed for 3.5mm
terminal strips.

REV 3

Page 448

When USB power is not used, a 5-12V supply is required. If 5V is required for some portion of your
circuit, it is suggested that a regulated 5V supply be used for input power. These are available from
SparkFun.

Page 449

http://www.sparkfun.com/commerce/product_info.php?products_id=8269

A push button switch and pull-up resistor can also be mounted (connected to IO(2)). The optional battery
for the real time clock (Panasonic ML2020) can be mounted on the back of the PCB. The VL2020/HFN
will also work, though it is more expensive and has less power.

Page 450

REV 2

Page 451

Page 452

suggested terminal strip On Shore Tech ED550/12DS or equivalent 3.5mm pitch connector (available at
Digikey)

Page 453

ARMweb Pin Description

Rev 4 and 5

32 pins available to the user, 5 of which can be analog inputs, and one dedicated analog input

With Rev 4 the pin numbering for the ARMweb will reflect the assignment native to the LPC2138. The revision
of the board is etched on the backside of the board.

P0(7)
P0(8)
P0(9)
P0(10)
P0(11)**
P0(12)
P0(13)
P0(15)
P0(17)
P0(18)
P0(19)
P0(20)
P0(21)
P0(22)
P0(23)
P0(25)
--
P0(27)
P0(28)
P0(29)
P0(30)
P0(31)++

IO(7)
IO(8)
IO(9)
IO(10)
IO(11)**
IO(12)
IO(13)
IO(15)
IO(17)
IO(18)
IO(19)
IO(20)
IO(21)
IO(22)
IO(23)
IO(25)
--
IO(27)
IO(28)
IO(29)
IO(30)
IO(31)++

TXD(1)
RXD(1)

AD(4), DAout
AD(5)
AD(0)
AD(1)
AD(2)
AD(3)

IO(7) is connected to LED and PUSHBTTON
as an input the push button is 0 when pressed

**IO(11) is open drain when an output (i.e. can not pull up)

IO(15) also controls LED (when low, the LED will be lit)

Input/Outputs -- user controlled
0-3.3V level, 4mA drive when configured as Outputs

5V tolerant

- use limiting resistor when connecting to a 5V supply

AD(5) is always an analog input, IO(26) does not exist

10 bit A/D inputs
when used as analog lines,

voltage levels should not exceed 3.3V

++IO(31) is always an output

P1(16)
P1(17)
P1(18)
P1(19)
P1(20)
P1(21)
P1(22)
P1(23)
P1(24)
P1(25)

IO(48)
IO(49)
IO(50)
IO(51)
IO(52)
IO(53)
IO(54)
IO(55)
IO(56)
IO(57)

Input/Outputs -- user controlled

0-3.3V level, 5 volt tolerant, 4ma drive when outputs

Port pins can be controlled with the P0..P4 keywords. Port 0 pins can be accessed with the
original IN, OUT... keywords . More details on the FIOs can be found in the NXP User Manual.

Dual Use AD pins

On reset or power up the AD pins are configured as IO inputs. To change those to analog IOs, the user
must individually read them as AD(x) commands. After that they will remain analog inputs until the
next reset or power up.

Page 454

PWM pins -- not yet implemented

All pins can be used for the software PWM function, and <TBD> pins can be used for the hardware
driven HWPWM function.

Battery Real Time Clock

The ARMweb board is designed to accept a Panasonic ML2020/H1C rechargeable Lithium battery at
position BT1. This battery powers the real time clock of the LPC2138. The contents of RAM is not kept
alive while running on battery, and the CPU restarts the user program in Flash when power is restored.
This battery is designed to maintain power for a few days without power, and will recharge fully in about
1 day.

LED

On the beta units, this is connected to IO(16) not 15. On later units while the LED is connected to
IO(7), the silkscreen shows it as connected to IO(15), and the example programs for the ARMmite and
ARMexpress use IO(15). So firmware on the board allows IO(15) to also control the LED.

U6 has duplicate connections for IO(17)-IO(20). U6 is designed to accept a ULN2803.

The bottom proto area connects neighboring pairs of pins. In the top proto area near C23, neighboring
triplets of pins are connected horizontally.

In addition the ARMweb can be ordered in larger quantities with a switching power supply, which
replaces U4, C1 and C9 with U1, D2, L4, C1 and C9

Page 455

Pin spacing

The spacing in the prototype area is 0.1" and the terminal strip row on the right side is designed for
3.5mm terminal strips.

Rev 2,3

31 pins available to the user, 6 of which can be analog inputs

The revision of the board is etched on the backside of the board.

IO0
IO1
IO2
IO3
IO4

IO6
IO7
IO8
IO9
IO10
IO11
IO12
IO13
IO14++

AD0
AD1
AD2
AD3
AD4
AD5

Input/Outputs -- user
controlled

0-3.3V level

4mA drive when
configured as Outputs

5V tolerant - use limiting
resistor when connecting
to a 5V supply

10 bit A/D inputs

when used as analog
lines, voltage levels
should not exceed 3.3V

++IO14 is always an
output

AD5 is always an analog
input, IO5 does not exist

IO15 Input/Outputs -- user
controlled

controls LED (when low,
the LED will be lit)
as an input also
connects to the push
button (0 when pressed)

IO16
IO17
IO18**
IO19
IO20

 Input/Outputs -- user
controlled

0-3.3V level, 5 volt
tolerant, 4mA drive when
output

**IO18 is open drain
when an output (i.e. can
not pull up)

BUS0
BUS1
BUS2

Page 456

BUS3
BUS4
BUS5
BUS6
BUS7
BUS-RW
BUS-CS

Input/Outputs -- user
controlled

0-3.3V level, 5 volt
tolerant, 4ma drive when
outputs

this functions as a
byte-wide bus with
control of RW and CS

Page 457

BASICboard Pin Diagram

The BASICchip is a complete System on a Chip, all that is required is 1.8 through 3.3V power and GND.
Then just wire the available IOs into your application. No extra crystals, external memories, or second
supplies required.

BASIC function pin # alt notes

IO(39) TXD(0) 16 P1(7) Serial Output, TTL compatible (active high) -- debug connection

IO(38) RXD(0) 15 P1(6) Serial Input, TTL compatible (active high) -- debug connection

 /RES 23 P0(0) RESET (internal pull-up) (active low)

IO(1) BOOT 24 P0(1) when LOW during reset, ISP is started which disables BASIC
(connects to LED and resistors on board)

IO(4)
IO(5)

SCL
SDA

27
5

open drain outputs, can only pull down, require a pull-up resistor to
drive high

IO(2)
IO(3)
IO(6)
IO(7)
IO(8)
IO(9)
IO(10)
IO(11)

P0(2)
P0(3)
P0(6)
P0(7)
P0(8)
P0(9)
P0(10)
P0(11)

25
26
6
28
1
2
3
4 AD(0)

Input/Outputs -- user controlled - 0-3.3V level

4mA drive when configured as Outputs

P0.7 has a 20 mA driver

5V tolerant - use limiting resistor when connecting to a 5V supply

IO(32) P1(0) 9 AD(1) Input/Outputs -- user controlled

Page 458

IO(33)
IO(34)
IO(35)
IO(36)
IO(37)
IO(40)
IO(41)

P1(1)
P1(2)
P1(3)
P1(4)
P1(5)
P1(8)
P1(9)

10
11
12
13
14
17
18

AD(2)
AD(3)
AD(4)
AD(5)

0-3.3V level

4mA drive when configured as Outputs

5V tolerant - use limiting resistor when connecting to a 5V supply

 XTAL 19
20

 optional crystal connection -- do not exceed 1.8V

 VDD 21 Power 2.5-3.3V input power -- do not exceed 3.3V

 GND 22 Ground (0V)

 AVDD 7 Analog power, must be equal to or less than VDD

 AGND 8 Analog Ground (0V)

1These pins P0(4) and P0(5) are open-drain, when configured as outputs they can only pull down.

Port P1(x) pins can be accessed using the P1(x) keyword. They can also be accessed using IO, IN,
OUT, and DIR with indexes 32-41.

Analog Inputs

Power Connections

Page 459

Optional Crystal

The LPC1114 has an internal 12 MHz oscillator that is trimmed to 1% accuracy. This is good enough for
most operations, including serial communication. If more accuracy is desired, then add an optional 12
MHz crystal at Y1 and C7 and C8 with 18pF capacitors.

JP1 option

JP1 in the upper right can have a 2 pin header installed by the user, When this jumper is installed (using
a 2 pin shorting block), the control lines from the USB are disabled, so that the board can be plugged into
a PC and no matter what state the PC is in, as long as the power is on the BASIC program will start up
and run on the ARM.

Page 460

DIN rail Pin Description

USB connection shown. Details on the enclosure at OKW enclosures .

The Ethernet version is software compatible with the ARMweb, refer to those pages for more information.

The USB version uses the standalone ARMbasic compiler on the PC.

Rev 1

25 pins available to the user, 6 of which can be analog inputs, 8 high current drivers, 3 digital IOs, and 8
flexible IOs

The LPC2138 is used with 512K Flash and 32K of SRAM.

Optional connections to USB, 10Mb Ethernet, or RS-485 (with optional isolation)

Page 461

http://www2.okw.com/okw-static/drawings-pdf/00010390.pdf

 picture shown without screw terminals for clarity

Power Inputs
Board 7-40V DC. This voltage is reduced with a switching regulator for the 3.3V internal board supply.

High Current Driver (ULN2803) 5-50V. This can be a separate supply from the Board input power, or can be
the same supply. It is a required connection for relay drivers to provide a path for current when the relay coil
is turned off, it does not have to be the power supply for the board in this case, but it can be.

For volume customers the power supply can be stuffed to accept a regulated 3.3V supply directly, this is
done by omitting the switching power supply and adding an appropriate ferrite bead at L5.

Schematic
The schematic is too large to include on this page, but is downloaded into the /Program
files/Coridium/Schematic directory. Is also available here..

Enclosure

OKW B6704100 The kits include custom cutouts for either Ethernet or USB connections. Mechanical
drawing for the enclosure is here ,

All the following options can be configured by the user, by optionally stuffing the through-hole components in
the DIN rail kit. Coridium will configure boards when 10 or more are ordered.

Page 462

http://focus.ti.com/lit/ds/symlink/uln2803a.pdf
http://www.coridiumcorp.com/files/Schematics/DINbase.pdf
http://www.okwenclosures.com/products/okw/railtec-c/zoom/zB6704100.jpg
http://www2.okw.com/okw-static/drawings-pdf/00006710.pdf

6 AD pins
These may configured for 4-20 mA sensors, with resistor dividers, or as digital inputs. These inputs have
diode clamps to 3.3V and GND.

4-20mA sensor --

 load 150 ohm SIP into R17

suggested components
 Bourns 4600X Bussed SIP resistor
 Bourns 4100R Isolated DIP resistor

A/D resistor divider --

 load R15 DIP resistor and R14 SIP with appropriate values

 AD = Vin * R14/(R14+R15)

 Source impedance to AD should be less than 10K.

digital IO --

Page 463

 load R15 with 100 or 1K

digital IO (pull-down)--

 load R15 with 100, R14 with 10K

digital IO (pull-up) --

Page 464

 load R15 with 100, R14 with 10K

High Current Drivers
These may use a high sink current driver, or configured as digital IOs with optional pull-ups or pull-downs.
The ULN2803 is an array of Darlington transistors that either pull a line low (when the corresponding IO is
high) or does not conduct at all. A typical application is to use these lines to drive a relay, with the opposite
end of the relay tied to a power supply.

High Current drive --

 This driver can sink a surge current of 500mA up to 50V, this driver is a ULN2803 .

suggested components
 TI ULN2803AN
 Toshiba ULN2803APG
 STmicro ULN2803A

digital IO --

digital IO (pull-down) --

Page 465

http://focus.ti.com/lit/ds/symlink/uln2803a.pdf

digital IO (pull-up) --

Flexible IOs
These may be configured as 8 digital IOs (with and without pull-up/pull-down), opto-isolated inputs or outputs,
or differential inputs or outputs. They are arranged in 2 groups of 4 so that there can be 2 opto-isolated input
and 2 opto-isolated outputs.

opto-isolated input --

Page 466

suggested components
 Liteon LTV-827
 Fairchild MCT9001
 Toshiba TLP621-2

opto-isolated output --

same components as above, rotated 180 degrees

bi-directional RS-422 driver --

Page 467

suggested components
 National DS75176BN
 TI SN75176AP

bi-directional RS-422 driver with termination --

suggested components
 Bourns 4600 Isolated SIP resistor

digital IO --

Page 468

digital IO (pull-down) --

digital IO (pull-up) --

3 digital IOs
These may be configured as straight thru, or with pull-ups or pull-downs

digital IO --

 shown with 100 ohm series

Page 469

digital IO (pull-down) --

 shown with 10K pull-down and 100 series

digital IO (pull-up) --

 shown with 10K pull-up and 100 series

RTC options
Rev 3

This revision adds the diode and resistor needed for charging an ML2020 battery. That battery can be
mounted on the backside of the board as illustrated below

Page 470

Rev 2

To connect a battery, remove R23, and use the Vbat via to connect, a resistor-Schottky diode-battery
connection (suggested schematic below)

GND and 3.3V are available on either side of C7

Page 471

A 32 KHz crystal (such as the Citizen CMR200TB32.768KDZFTR) can be connected at Y2, with the
two 22pF startup caps on the bottom/circuit side of the board.

Page 472

PRO Pin Description

The PRO is footprint and pin compatible with the Arduino PRO. In addition it has an onboard 5V regulator so
it is compatible with 5V shield boards.

BASIC or C programs can be downloaded using the installed test connector using the USB dongle contained
in Coridium's evaluation kit or using the SparkFun USB Basic Breakout board or FTDI cable from Digikey
. More details on these connections here.

Pins available to the user, 7 of which can be analog inputs

IO(0)
IO(1)
IO(2)
IO(3)
IO(4)
IO(5)
IO(6)
IO(7)
IO(8)
IO(9)
IO(10)
IO(11)
IO(12)
IO(13)
IO(14)

P0(9)
P0(8)
P0(27)
P0(19)
P0(28)
P0(21)
P0(5)
P0(29)
P0(30)
P0(16)
P0(7)
P0(13)
P0(4)
P0(6)
P0(20)

RXD(1)
TXD(1)

EINT0

PWM1
PWM2

PWM8

PWM4

PWM3

PWM6
PWM7

PWM5

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant

use limiting resistor when connecting to a 5V supply

IO(15) P0(15) EINT2 IO15 connected to LED -- no other connection

AD(0)
AD(1)
AD(2)
AD(3)
AD(4)
AD(5)
AD(6)
AD(7)*

P0(22)
P0(23)
P0(24)
P0(10)
P0(11)
P0(12)
P0(25)
P0(26)

IO(16)
IO(17)
IO(18)
IO(19)
IO(20)
IO(21)
IO(22)
IO(23)

10 bit A/D inputs

may also be used as digital Input/Outputs IO(16-23)

when used as analog lines, voltage levels should not exceed 3.3V

AD6 connected to Arduino AREF pin
AD7 connected to a via

Dual Use AD pins

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the
user must individually specify a control direction using INPUT(x), OUTPUT(x), DIR(x), or
IO(x) commands. After that they will remain digital IOs until the next reset or power up.

The LPC2103 does not support an external reference for the A/D converters, so the Arduino AREF pin
is connected to a seventh converter, AD(6).

PWM pins

Page 473

http://www.sparkfun.com/commerce/product_info.php?products_id=8772
http://search.digikey.com/us/en/products/TTL-232R-5V/768-1028-ND/2003493

All pins can be used for the software PWM function, and 8 pins can be used for the hardware driven
HWPWM function.

Digital IO connections

REV4

The major change for rev 4 is to add a parallel connection for the 8 IOs IO(8)-IO(13), GND and IO(22) that
is on 0.1" centers in relation to the other connections.

In addition the loadC jumper was rotated 90 degrees to make room for this extra connection. And it is
also easier to add a battery to the board, by making 1 cut, and adding a diode, resistor and battery
(details below).

REV 3

Page 474

Picture is for the Rev 3 production board. On the Rev 1, IO(23) is available on the via next to AD(5)/IO(21).

Analog connections

Page 475

Picture is for the Rev 3 production board. On the Rev 1, AD(7) is available on a via next to AD(5).

Dual Serial Ports

Where the Arduino has only a single serial port, the ARMmite PRO has 2 UARTs. The second UART
is connected to IO pins 0 and 1. This allows it to be used simultaneously with the first UART acting as
a debug port. In the Arduino, the debug port is connected to these 2 IOs. To allow for this connection
as well, the ARMmite PRO has 2 shorting bridges that can be shorted to make this connection.

Page 476

Power connections

The board is shipped with a 2mm power jack compatible with a JST PHR/S2B or SparkFun PRT8671
or various battery packs from SparkFun.

Pads for a Cui PJ-002A or SparkFun PRT-119 power connector are available in the lower left hand
corner.

For both battery and 6V input, 2 pin 0.1" spaced holes are available for wires or headers. When using
the battery connector, total current draw for the board must be limited to 200mA. If you want to use
more current, you should install a jumper around the D2 diode (holes are available above D2).

Diode steering allows power to be supplied from a barrel connector from a 6V unregulated source, 5V USB
test connector, or the battery connector. Because of the Schottky diodes, all 3 power sources can be
connected simultaneously. If you are using an unregulated wall transformer, you must check the open
circuit voltage and it MUST be less than 12V.

When the 6V source is used, 5V Arduino shields can be powered from the ARMmite PRO.

The schematic describes this circuit

Page 477

http://search.digikey.com/scripts/dksearch/dksus.dll?pname&site=us;lang =en&wt.mc_id=Dxn_US_T091_Catlink;name=455-1165-ND
http://www.sparkfun.com/commerce/product_info.php?products_id=8671
http://www.sparkfun.com/commerce/product_info.php?products_id=119

The full schematic can be seen here

Power connections details

Page 478

http://www.coridiumcorp.com/files/Schematics/ARMproSCH.pdf

The 3.3V regulator can supply 150 mA, with 50 being used by the LPC2103. The 3.3V connection next to
RESn on the lower power connector is only connected if the shorting pads are shorted (NOT the factory
default).

The analog GND should be used to connect to the GND of analog inputs. Digital and Analog GNDs are
connected together with a small trace, but to minimize noise you should use the analog GND only for
analog signals.

Vdrive connection (added in rev 2)

A connection for the Vdrive has been added so it is easy to use an ARMmite PRO to do data logging to a
USB Flash. So all that is required is a Vdrive and a 2mm header .

Page 479

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=768-1003-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=S5800-08-ND

Jumpers and test connector for Program Download

The USB Dongle from Coridium will supply 5V from the USB to power the ARMmite PRO. It also controls
the RESET and BOOT signals to automatically load C or BASIC programs using MakeItC or BASICtools.

When using the SparkFun FTDI Basic Breakout Board, a limited amount of power can be supplied from
the BBB, but this is limited to 50 mA and after diode drops, its about 2.8V to the LPC2103. In practice
this will run, but it is outside the part specifications, so it should be limited in use.

Also with the SparkFun FTDI Basic Breakout Board to load a C program, the LOAD C jumper needs to be
installed, then removed to run the program. BASIC programs can be loaded and controlled using the
SparkFun board, with no additional steps/jumpers.

Page 480

An alternative is to use a 2 pin header with a shorting block (pictured below)

Real Time Clock Oscillator

The ARMmite PRO uses ceramic resonator, which has a 1% accuracy. But there is a provision to load a
32 KHz crystal and 2 cap to use that for the Real Time Clock.

Page 481

The crystal should be a 32.768 KHz can type, and depending on the rating the capacitors are 0603 size
18-27pF.

If you install this, include the following at the start of your program.

 #define RTC_CCR * &HE0024008

 RTC_CCR = &H11 ' clock the RTC with the 32 KHz crystal

Rev 4 version of the board makes it easier to add a battery. First cut the trace indicated below, then install a
Schottky Diode, 180 ohm resistor and Panasonic ML2020H as shown below. The VL2020/HFN will also
work, though it is more expensive and has less power.

Page 482

Page 483

Wireless ARMmite Pin Description

obsolete product -- documentation for reference

24 pins available to the user, 8 of which can be analog inputs

Refer to the Getting started section for details on selecting your wireless components.

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7
IO8
IO9
IO10
IO11

IO14
IO15

RXD1
TXD1

EINT0
EINT2

PWM1
PWM2
PWM3
PWM4
PWM5

PWM6
PWM7
PWM8

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant - use limiting resistor when connecting to a 5V supply

IO15 connected to LED

IO12
IO13

Input/Outputs -- user controlled

Open drain 4mA pulldown when configured as Outputs

5V tolerant

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

IO16
IO17
IO18
IO19
IO20
IO21
IO22
IO23

10 bit A/D inputs

may also be used as digital Input/Outputs IO(16-23) -- user controlled

when used as analog lines, voltage levels should not exceed 3.3V

Dual Use AD pins

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user
must individually specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After
that they will remain digital IOs until the next reset or power up.

PWM pins

All pins can be used for the software PWM function, and 8 pins can be used for the hardware driven
HWPWM function.

Page 484

Jumpers

The wireless ARMmite default baud setting is 19.2Kb, and the default setting for the BlueSmiRF and Xbee
modules are 9600 baud. While the defaults can be changed for these wireless modules, there is a
potential "chicken and egg" problem getting there. So if the 9600 baud jumper is connected on RESET,
the ARMmite will come up at that baud rate.

The wireless connections do not have sufficient control lines such that RESET can be controlled from the
PC, as well as the RTS line which is used to load C programs. So the BASICtools and MakeItC will
prompt you to add a jumper or push the reset button where appropriate.

Page 485

Power

The wireless ARMmite primary power supply is 3.3V. This voltage is available for user circuitry at 3 pins
in the prototype area. There is also a pad that is connected to the input power.

Input power for the wireless ARMmite require 5V or greater. It may be a regulated 5V supply or an
un-regulated 6V supply. But it all cases it should not exceed 12V DC. IF YOU ARE USING A
BlueSMiRF, this input power is applied directly to the BlueSmiRF and it must not exceed 6V . If you are
using an unregulated wall transformer, check the open circuit voltage and make sure it is within these
limits.

Page 486

If the all the connections are made to the USB breakout board then 5V can be supplied from the USB.
That is also available at the USB 5V pad. When using power from the USB, it should be the only
connection for power (do not connect the 5-6V power).

Page 487

suggested terminal strip On Shore Tech ED550/12DS or equivalent 3.5mm pitch connector (available at
Digikey)

Page 488

XB Sensor Pin Description

Product Preview

22 pins available to the user, 7 of which can be analog inputs

Refer to the Getting started section for details on connecting your wireless components.

Dual Use AD pins

On reset or power up the AD pins are configured as digital inputs. To change those to ADs, the user must
include the AD11.bas library and call InitAD

PWM pins

All pins can be used for the software PWM function, and 8 pins can be used for the hardware driven HWPWM
function.

One Wire interfacing

The optional RJ-45 connection was designed with the idea of driving up to 7 one wire sensors, with P0.7
available as a high current drive that can power up the sensors through a 8 pin SMT (CTS 745C type) resistor
on the back side of the board.

That connector is not limited to that, as I2C, SPI or other serial options can be used.

Baud rate settings

Page 489

The XB sensor default baud setting is 19.2Kb, and the default setting for the Xbee modules are 9600 baud.
The Xbee sensor baud rate can be set with the X-CTU utility from Digi. Some details in the installation
section.

When the USB dongle is connected that takes precedence over the serial connection on UART0 to the Xbee
module. This is done by sensing the Vin voltage (see the schematic) for details.

Power

The XB sensor primary power supply is 3.3V. This voltage is available for user circuitry at 3 pins in the
prototype area. This can be derived from either the battery connection, or the mini-B USB connection. When
connected to the USB mini-B connector, a Li-Poly battery can be charged. The charge current is set at 500
mA. These batteries are available in various sizes from SparkFun.

During debugging, the USB dongle can be connected and it will supply power to the board through Vin. But
the battery should not be charged this way as it may exceed the current capability of the USB debug dongle.

.

Optional components

Coridium does not stock the Xbee modules, as there are too many varieties. We will quote XB sensor boards
with Xbee modules for orders of 10 or more boards.

This board is designed to fit into a Polycase LP-11 enclosure

In addition, the board has been designed to accept optional RJ45 vertical connections using Bel Stewart
SS-74301-002 or TE connectivity 5556416, available from Digikey.

Also a vertical power connection can be made with Cui PJ-032A 2.1mm barrel connector.

Space is also provided for a reset switch.

Page 490

file://C:\Users\Public\Documents\HELP\wireXBEE.html
file://C:\Users\Public\Documents\HELP\wireXBEE.html
http://www.coridium.us/files/Schematics/XBsensor.pdf
http://www.sparkfun.com/products/10718

ARMweb Ethernet Services

Ethernet Services (mbed 1768)
 armweb.htm PAGE
 Controls Page
 CGI Services
 CGI Example
 FTP Services
 Mail Service
 Web Services
 Web BASIC
 UDP Services
 Reset Behavior
 Firmware Update

ARMweb C support

Page 491

https://www.coridium.us/coridium/shop/software/s05-mbed-lpc1768network
https://www.coridium.us/coridium/shop/software/s05-mbed-lpc1768network
http://www.freertos.org/index.html?http://interactive.freertos.org/entries/243907-lpc2138-enc28j60-port/edit

Ethernet Getting Started

Getting Started
 Install Software (BASICtools)
 Install Firmare (mbed BASIC binary)
 Connect Ethernet
 USB connection for ARMweb
 Writing programs with BASICtools

Page 492

https://www.coridium.us/coridium/shop/software/s05-mbed-lpc1768network
https://www.coridium.us/coridium/shop/software/s05-mbed-lpc1768network

USB connection for BASICtools
The main user program is loaded through BASICtools via a USB connection. The attachment of the USB and
power supply is shown below.

Initially you will have to load BASIC firmware onto the LPC1768. These boards use the mbed protoco, so
when you plug the board in for the first time, an MBED disk will appear to the files manager (below)

Depending on the mbed firmware version (running on a different CPU LPC11U35 or LPC43xx), you may see a
.bin file. Delete any of these and copy the BASIC.bin firmware you downloaded or were emailed from
Coridium. And also depending on mbed firmware you may need to reset the board via push button. Not for
older ARMweb/ LPC2138 boards usethese directions .

While an Ethernet connection is not required, if it exists and there is a DHCP server, the ARMweb will boot
faster (otherwise each reset the 10 second timeout waiting for DHCP service will occur).

 mbed LPC1768

Page 493

Seeed
Studio ArchPro

ARMweb

Page 494

DINkit - Ethernet.

BASIC and Web page interaction

BASIC can be embedded in the web page served by webBASIC. That BASIC code can access global
variables of the user program running on the ARM. BASIC embedded in the web page can NOT call a
FUNCTION or SUB..

The user (client) can also interact with an webBASIC program via the CGI mechanism.

USB drivers

Most PC's will sound a tone that indicates a new USB device has been connected. Most Windows 7, 8 and
10 systems will either include the FTDI device driver or are able to download it automatically from the
network.

If your system is unable to do that. Run the FTDI driver installation setup in the \Program
Files\Coridium\Windows_drivers directory. This will install the proper drivers for the FTDI chips we use for
interfacing to the USB.

Up to date details are at the www.ftdichip.com VCP drivers page.

Continue with the some programming examples.

or

More details on webBASIC...

Page 495

http://www.ftdichip.com

Step 2: Connect Power and Ethernet
Connect Ethernet Cable to ARMweb PCB

You should see a bluue LED on the mBed board and green LED connect light on the lower left side of the
Ethernet cable indicate a connection was made. Also your hub normally has a similar type of connection
indicator. There should also be some traffic indicated on the right side as the ARMweb looks for a DHCP.

For the mbed LPC1768 power can be supplied from the USB port. The picture above shows the Ethernet
connection using a breakout board from Cool Components (unfortunately no longer in production). The
Ethernet connection can also be made with a MAGJACK breakout board or mbed Application board from
SparkFun. .

The primary power for the ARMweb is 3.3V provided from a linear regulator. The input power for the PCB may
be 5V regulated supply or a 6-9V unregulated supply, with a current rating of 250 mA or more. The connector
is a standard 2.5mm barrel connector with the + positive side of the supply in the center. A good choice for
this power is this 5V regulated supply from SparkFun

If you don't see the LEDs lit, check your power connections (you should see at least 6V of the + side marked
on C1 with an unregulated supply or 5V with a regulated supply, and 3.3V as marked in the prototype area).

USB connection

You need a serial connection to debug BASIC programs as well as network issues. On the mbed 1768 board

Page 496

http://www.sparkfun.com/products/8269
http://www.sparkfun.com/products/8269

this is through the USB connector on the top of the board.

This can be our USB dongle (specific ARMweb version when ordering separately) or some other TTL serial
connection. Details on making the USB connection here.

Below is the picture you should see for the mbed 1768 board, with the capital M in coM indicating an mbed
serrial device.. If you do not see a coMxx serial device you may need to install the mbed serial device driver
(in \Program Files (x86)\Coridium\Windows_drivers.

Finding the card on the network (larger network) -- NetBIOS name service

The ARMweb will configure itself with an IP address assigned by a DHCP server. IP addresses are the way
networks organize themselves. If there is no DHCP server found, the ARMweb can provide limited DHCP
services in a Diagnostic mode, assuming a single connection on Ethernet with a PC using either a hub or
cross-over cable (see the Diagnostic section below).

Assuming a DHCP server is available and you are running on a Windows machine, you can use the Windows
NetBIOS Name Service. In which case you can find the ARMweb initially with http://armweb. Note that
some administrators disable NetBIOS name service .

Page 497

http://www.coridiumcorp.com/catalog/product_info.php?products_id=83
http://armweb
http://armweb

Finding the card using the DHCP server

On most home networks your DHCP will be your internet connection, and its address will share the first 3
bytes with the IP address of your PC. And the final byte being 1. The IP address of your PC is available from
the control panel or by typing IPCONFIG at a DOS command line. Common values for the DHCP server are
192.168.1.1 or 192.168.0.1 as in the example below.

You can navigate to the DHCP server using that IP address from a browser as below.

Most DHCP servers will list client machines which have been assigned an IP address. This 2wire server
indicates it on the details view of the home network, and details for the device

Page 498

Another example is the display from a Dlink Firewall that is also providing DHCP services.

So in this case the ARMweb can be found at http://192.168.0.48

Now that you have the IP address of the ARMweb

You can go onto configuration settings, or writing simple programs using BASICtools.

But for this web interface navigate using a browser to http://w.x.y.z where w.x.y.z is the IP address of the
ARMweb (192.168.0.48 in this example).

Page 499

http://192.168.0.482
http://w.x.y.z
http://192.168.0.48
http://w.x.y.z

DHCP assignment vs. fixed IP addressing

We routinely allow the DHCP server to assign an initial address, but will can a fixed IP address in the final
setup. One reason to assign a fixed IP, is to make sure that the IP address assigned never changes, for
instance following a power outage. Details on setting a fixed IP address.

On to Step 3

Page 500

armweb.htm PAGE

Description

This page is the main control page for the ARMweb. It can be accessed at the armweb.htm page.

Code :
The default is this page, which mirrors the output to the USB connection of BASICtools..

Run :
This button will run a previously loaded user BASIC program. This function is disabled when a user BASIC
program is running. You can only STOP a running program from the BASICtools USB connection.

Clear :
This will erase any user program. This function is disabled when a user BASIC program is running .

Controls :
This accesses the Controls Page. It will be disabled when a user BASIC program is running.

Help:
Linked to the Coridium Web Site help files on the internet.

See also

 UDP Services
 FTP Services

Page 501

Controls PAGE

Description

This page controls the ARMweb. When the user program is running this page is disabled for security.

Node Name :
The ARMweb's default node name is ARMweb, when you change this main page, the ARMweb will adopt that
entry as its node name. The node name will be seen by DHCP servers, as well as the response to node
ping .

Set Date:
If your browser supports the JavaScript system-time functions this button will access the systems date and
time and update the ARMweb registers.

DHCP :
The ARMweb node can either use a DHCP to obtain its IP address, or you can set it to a fixed IP address.
The default is to accept a DHCP generated IP address.

We routinely allow the DHCP server to assign an initial address, but will use a fixed IP address in the final
setup. One reason to assign a fixed IP, is to make sure that the IP address assigned never changes, for
instance following a power outage.

Passwords:
The ftp service can use a password (the default is none or user/pass and password checking turned off). If
you do set a different username and password also click the Use Password button.

Email:
The MAIL statement can send an email to the address and server set by these fields. The SMTP server for

Page 502

name@somewhere.com is normally smtp.somewhere.com .

FTP file count:
This keeps track of the number of files in the FTP area. It also provides a mechanism to clear and reset the
FTP space..

See also

 UDP Services
 FTP Services

Page 503

mailto:name@somewhere.com

CGI Services

Syntax

FUNCTION CGIIN AS STRING

Description

CGIIN functions like a serial channel to the web server. When someone accesses the web page that
creates a CGI event (like a button push, or text entry) that data will be sent to a buffer that can be read
from the BASIC program.

If no GET request has been made the string returned will also be an empty string.

When the ARMweb is accessed from a web page, if the web page contains a ? in the address, data
following the ? is passed to the CGIIN routine. There is only one 256 byte buffer available, and that buffer
will be available until it is read by a CGIIN, or another CGI request is made. CGI events are only
processed when the user's BASIC program is running.

This function requires version 7.36 of the firmware.

Example

dim CGIinput(255) as string
 '...

while 1
 CGIinput = CGIIN ' assumes the form is http : // ... /Input?=# per the example in CGI example

 if CGIinput(0) then print CGIinput ' display on the terminal window -- for debugging

 select CGIinput(6)
 case "0"
 ' do nothing
 case "1"
 io(16) = 1
 case "2"
 io(16) = 0
 end select
 '...

 CGIinput = "" ' erase the input line
loop

See also

 CGI example
 Web Basic
 FTP Services

Page 504

Web page Programming

Building a web page on the ARMweb is much like any other web server. An HTML web page is ftp'd to the
ARMweb, and it can communicate to a BASIC program running on the ARMweb. The BASIC program can be
controlling attached devices. Control or data can be fed back through the web page interface. All sources for
this example are at www.coridiumcorp.com/files/WebBASIC.zip

Use standard HTML and JavaScript

Build your web page in standard HTML and JavaScript. Include text and graphics in the web page, here the
web page includes an image of a logo. In this example user actions on the web page are fed back with a CGI
script using JavaScript button action. It also can display a state of the ARMweb, here an LED by running a
small BASIC program (included into the HTML).

Upload to ARMweb using FTP

No special tools to compile your page, just upload it to the ARMweb. Here the 2 files used for the web page,
the main HTML and the banner image.

Page 505

http://www.coridiumcorp.com/files/WebBASIC.zip

Interact with a BASIC program running on the ARMweb

The web page can send data to the ARMweb using CGI that can be read in your BASIC program. It can parse
these requests and perform various actions. This allows you to control an ARMweb across the room or
anywhere on the internet.

Your Web application running on an ARMweb

This is what will appear on the web, served by the ARMweb.

Page 506

See also

 CGI services
 Web Basic
 FTP Services

Page 507

http://www.coridiumcorp.com/ARMhelp/scr/WebBasic.html
http://www.coridiumcorp.com/ARMhelp/scr/FTPservices.html

FTP Services

LPC1768 contains a small File System to store additional web pages.

 maximum size of all files combined must be less than 224KB
 there must be less than 76 files
 File names must be 23 characters or less
 File names are case sensitive
 there is only 1 directory and sub-directories are not supported
 the main HTML file must be of the form filename.htm
 ftp put, delete are slow due to the Flash writes, which can take 20 seconds or more
 any BASIC program must be STOP 'ed, otherwise ftp will not log you in, or will ignore any requests

By default password protection is not used for FTP.
If logging in from a command prompt simply press enter when asked for Username and Password.
If password protection is desired go to the Controls page of ARMweb and select Use Password.
NOTE : The default user name is "user" and password "pass", when enabled.

Change these as desired and reset the node to apply changes.
Also on the Controls page, a file from the system may be chosen as the Main Page.
This then becomes the default page when browsing to http://ARMweb or to http://Nodes-IP-address .

The current implementation is aimed at using the simplest ftp interface, and it may not work with more
complex ftp programs or browsers doing ftp. We recommend using the Windows ftp from the DOS command
prompt. Here is a sample session used to copy the files for a web page to the ARMweb (192.168.0.48 was
assigned by the DHCP, and the default username/pass were used (either enter user and pass, or just hit
enter both times).

After the above ftp session a web page has been setup on the ARMweb. It can be viewed at
http://192.168.0.48/simple.htm.

To make that you are communicating with webBASIC start from the main page..

Page 508

http://ARMweb
http://Nodes-IP-address
http://192.168.0.48/simple.htm
http://ARMweb
http://Nodes-IP-address
http://192.168.0.48/simple.htm

From then on, when you navigate to http://192.168.0.48/simple.htm .

See also

 Web Basic
 Web Services

Page 509

http://192.168.0.48/simple.htm
http://192.168.0.48/simple.htm

HTTP Services

Syntax

SUB HTTP(IPaddress, CGIstring AS STRING)

Description

This allows a BASIC program to do a GET or POST to server somewhere on the web. The BASIC
program needs to know the IP address of the server and that is passed to HTTP as a 32 bit value.

The CGI string should include either GET or POST followed by the web address (can be index.html) and
may be followed by a CGI request which typically follows a ?. For example this is the same as
http://192.168.0.80/index.html?i=5 which could be a local server on your network. This also works for
any IP on the web as well.

The purpose of this is to send a CGI message to a server, but the first 256 bytes that the server returns
for the request will be placed into the CGI buffer. Any data after that will be dropped. As this is shared
with the CGIIN buffer, you should not be trying to use both as one or the other will be lost.

This function requires version 7.58 of the firmware.

Example

DIM A_STRING(256) as string
DIM IP_ADDR as integer
DIM i as integer

' IP Address of my local web server
IP_ADDR = (192<<24)+ (168<<16) +(1<<8) + 4

i = 123 ' some value to send in CGI

' Build a request string, could also be a POST
' In this case include CGI
A_STRING = sprintf("GET /index.htm?i=%d %c%c%c%c",i,13,10,13,10)

' Example read a local page server
HTTP (IP_ADDR, A_STRING)

See also

 CGI example
 Web Basic
 FTP Services

Page 510

http://192.168.0.80/index.html?i=5
http://192.168.0.80/index.html?i=5

MAIL

Syntax

MAIL (string) ' does not use authentication,

MAIL (message, recipient, user_name, pass_word) ' takes 4 strings and uses authorization

Description

In the first form MAIL will send an email to the address specified in the Controls page. This email is
limited to an address on your mail server/ISP, as it is piggybacking on the authentication of your internet
connection.

So you can send an email to yourself.

To use email authentication use the second form, in this case it uses the SMTP address of the controls
page, and logs in using the user_name and pass_word. The email message will be sent to recipient .
recipient requires the full address like somebody@somewhere.com. user_name should NOT include
domain.com as that is set in the Controls page smtp server.

In all cases email is limited to 1 email sent every 10 seconds.

Setup

Go to the Controls web page of the ARMweb.
Enter your email address in the Email input box and press enter.
Enter your SMTP server's address in the SMTP input box and press enter.
Example:
jdoe@coridiumcorp.com
smtp.coridiumcorp.com

Page 511

Reset the node to apply the changes.

The smtp server used must service the email address chosen.

The maximum size of the MessageList which will be contained in the email Body is 255 bytes.

Example

DIM Astr(10) as STRING
Astr= "the current temperature is "+STR(temperature)
MAIL (Astr)
 '...

MAIL ("operator intervention needed") ' send a short email to yourself

MAIL("wake up out there","someone@somewhere.com","my_user_name","my_password")

See also

 UDP Services
 FTP Services

Page 512

Web Services

webBASIC may be accessed from any web browser by going to http://ARMweb or if the node's IP is known
http://192.168.xx.yy.
From here users may enter code a line at a time, download basic files or access all features of ARMweb.

Building a web page

This is not the venue to teach web page design, but a simple example will be presented here. Various ways
can be used to build a web page from FrontPage, DreamWeaver, Mozilla-Composer, to your favorite text
editor. This page is built with 2 files, the main page and an image file (banner1.gif). This is the sample
source built as displayed in Mozilla Composer.

Once you've built a page, use the FTP Services to upload it. Then you will be able to view the page as the
main page for the ARMweb-

webBASIC first scans the ftp space for a file named in the browser request (simple.htm in this case). If not

Page 513

http://ARMweb
http://192.168.xx.yy.

found there it will attempt to find it in the file system on the SD card.

See also

 Web Basic
 FTP Services

Page 514

Web BASIC

BASICweb allows for basic code to be embedded in the web pages much like PHP or JavaScript
Global variables may be accessed from the User BASIC program. The intention is not to place your BASIC
code in this program, but to interact with your program from a web page. For example if you put an endless
loop in the <?BASIC embedded in the web page, the web page will hang. <>BASIC can not call BASIC
functions or subroutines in the user code.

Example: Add reading and setting a User variable through the web page.

Here is a modified version of the web page loaded from Web Services and a second webpage that resets the
value of X

source for simple.htm
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

 <meta content="text/html; charset=ISO-8859-1" http-equiv="content-type">

 <title>simple page</title>

</head>

<body>

<?BASIC

 print "the VALUE of x is ";x

?>

Zero X

</body>

</html>

Now from Code page of ARMweb enter the following program (its can be accessed at armweb.htm)

Page 515

WHILE 1
 IO(55) = X AND 1 ' Flash the LED
 X = X + 1
 WAIT (500)
LOOP
RUN

The program is running and the value of X is incremented every half second.
Browse to http://ARMweb/simple.htm

Refreshing the browser will show the updated values of X.

Example: Executing a BASIC command from a web page.

To the above example we will add a method to set the variable x to 0, by accessing another web page that
runs a BASIC program. This may also be accomplished with CGI, see the CGI examples .

First add an anchor to another web page that will be served by the ARMweb

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
 <meta content="text/html; charset=ISO-8859-1" http-equiv="content-type">
 <title>simple page</title>
</head>
<body>

Page 516

http://ARMweb/simple.htm
http://ARMweb/simple.htm

<?BASIC
 print "the VALUE of x is ";x
?>

Zero Y
</body>
</html>

Next create another page zero.htm that executes a very short BASIC program to zero the variable y. This
page also returns to the original page.

source for zero.htm
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

 <meta content="text/html; charset=ISO-8859-1" http-equiv="content-type">

 <title>simple zero page</title>

</head>

<body>

<?BASIC

 print "the VALUE of x was ";x;"
"

 x = 0

 print "the VALUE of x is now";x

?>

</body>

</html>

<

/PRE>

< /FONT>

Page 517

Some notes, currently errors in the BASIC embedded in HTML are not flagged,

so be careful, but they will be visible to the console of BASICtools over the

USB connection.

The meta tag highlighted will return you to the original page after 1 second,

though not all browsers support this.

For a CGI method to accomplish the same see the CGI

examples .

WEB BASIC limits

The BASIC code between <?BASIC and ?> is limited to 1450

characters.

The output from a web BASIC program must not exceed 1460 characters.

If the web BASIC contains an infinite loop, the server will hang waiting for

the loop to complete.

The Pre-processor is not available to WEB BASIC inside the HTML. That

includes #include, #ifdef, #define...

 The code between <?BASIC ... ?> and

the output is also sent to the UART0 (and via USB Dongle

or mbed USB serial port to BASICtools).

See also

 Web Services

 FTP Services

Page 518

UDP Services

Syntax

FUNCTION UDPIN (PORT) AS STRING
FUNCTION LASTIP

SUB UDPOUT (IP, PORT, String)

Description

UDPIN and UDPOUT read or write a packet of data on the network using UDP protocol.
The IP address which the data is sent to or received from is designated by IPa.IPb.IPc.IPd eg.
192.168.0.122, which is packed into a 32 bit word.
Broadcast addressing is not supported for UDPIN or UDPOUT.
The port is designated by PORT.

NODE PING - A special feature of ARMweb listens on port 49152 (0xC000) for any UDP broadcast.
The node will then reply with its Name and IP to identify it on the network.
According to iana.org, The Dynamic and/or Private Ports are those from 49152 through 65535.
User applications should use ports above 49152 to avoid other conflicts.

UDPOUT automatically sets the node to listen on the given port.
This allows any responses to be buffered and subsequently read with UDPIN.
If an application wishes to just read UDPIN it is advised to call UDPIN once to clear any buffered data
first.
Each call to UDPIN will wait up to one half second to receive data or return immediately upon receipt.
If no data was read the port is left open for reading, any incoming data will be buffered and available for
subsequent calls.
The maximum size of the returned by UDPIN is 255 bytes.

This function requires version 7.36 of the firmware

Example

'send a string to UDP port 50000 of 192.168.0.122
UDPOUT ((192<<24)+(168<<16)+(0<<8)+122, 50000, "9876543210")

DIM Astr(100) as STRING

'sit and listen for any incoming UDP on port 50000

Astr = ""

WHILE Astr(0) = 0

 Astr = UDPIN (50000)

Page 519

 x = LASTIP

LOOP

PRINT Astr; " from "; x>> 24; "."; x>>16 and 255; "."; x>>8 and 255; ".";x and 255

Executing...

ABCDEFGHIJ from 192.168.15.122

See also

 Web Basic
 FTP Services

Page 520

ARMweb setup

Getting Started
 Power on behaviour
 Firmare Update (mbed BASIC binary)

Page 521

https://www.coridium.us/coridium/shop/software/s05-mbed-lpc1768network

Power On Behavior

Initial Power on conditions

On power up all pins are tri-stated on the ARMweb.

If P0.14 is low during reset, the NXP ISP (in system programming) routine starts. This is how we load
firmware.

If P0.14 is high the Coridium firmware starts up. It looks for a cable plugged into the PHY. If there is none
the board will not start the user program, but drops into the BASIC firmware monitor.

If there is an Ethernet cable connected, the ARMweb tries 5 times to get an IP address from a DHCP. There
is a pause of 5 seconds between each try.

If no DHCP responds, and the ARMweb has never seen a DHCP response it goes into a mini-DHCP server
mode. In this mode a PC with a cross-over cable may be directly connected to the ARMweb (or a hub and
standard cables). The ARMweb will act as DHCP server to the PC. This mode is for diagnostic purposes
and is NOT intended for normal use.

If the DHCP responds the ARMweb accepts the IP address and the boot process continues.

The ARMweb waits 0.5 seconds for an ESC character, which if received on UART0 stops the user program
from running. If no ESC is received the process continues.

If the ARMweb security setting on the controls page has been set, the user program will start. If it is not set
it will drop into the BASIC firmware monitor.

Restoring Factory Defaults

Press and hold the button on pin P0.7 during RESET (on J8.9 in DINkit). The firmware will erase all user
programs, settings and files in the ftp area.

Regaining control with BASICtools

Hit the STOP, which disables web access and enters the monitor. Type in a small program that terminates,
which will erase the looping program. Hit RESET which will drop back into a non AUTORUN state.

BASIC Boot Loader serial commands

When the user program is not running or not at a STOP, the BASIC firmware monitor is functioning.

The ARMweb has a full compiler ready to compile BASIC programs line by line. This can be used with the
TclTerm terminal emulator or the web interface of the ARMweb. When running BASICtools programs are
compiled on the PC and downloaded to the ARMweb. The ARMweb also supports the commands used by
all the others, and these are used to load and control BASIC programs-

 :20.... Coridium hex format line, copy this data into the code buffer
 :00000001FF write the code buffer into the appropriate Flash space
 ARM responds by sending XOFF, writing the Flash, then sends XON followed by +
 ? get vectors for ARMbasic compiler running on the PC
 ^ launch any user program contained in the Flash space
 @HHHH dump memory starting at HHHH which is a hex value without a preceding $
 @ dump memory starting from last address + 32
 "message echo message back
 ! reserved
 ctl-C or ESC on reset run the BASIC bootloader rather than the User program

Page 522

Firmware Update

ARMweb allows for firmware updates in the field. The following steps should be used.

After version 7.36, firmware versions will require update via USB. Note what com port the USB is configured
as, you will need that information below.

Download load21xx.exe from the Yahoo ARMexpress Forum Files section.

Also download the latest ARMweb firmware. The name will be of the form webXXXX.hex. As of March 2011,
web0746.hex is the latest release.

From a command line run load21xx.exe.

It will prompt you for the proper format of the command to update, the CPU is a 2138 -- see below for an
example session.

Restoring Factory Defaults

Press and hold the button on pin P0.7 during RESET (on J8.9 in DINkit). The firmware will erase all user
programs, settings and files in the ftp area.

firmware update session --

Page 523

http://tech.groups.yahoo.com/group/ARMexpress/files/

Page 524

Tables

Tables
 ASCII Character Codes
 Bitwise Operators
 Operator Precedence
 Variable Types

Page 525

https://www.coridium.us/coridium/shop/boards/bd05-stamp

ASCII Character Codes

ARMbasic uses the standard "ASCII extended" character set. The compiler uses the character set values
32 to 126 which corresponds to SPACE through TILDA.

Characters outside this range may have a special meaning and are interpreted by the terminal emulation
program that is controlling the ARM processor. Those would include BACKSPACE, TAB, CR and LF. These
characters cause changes in the stream of characters going to or from the ARMexpress module. These
characters may be interpreted differently on a PC vs. a Mac.

However when using RXD(0) or TXD(0), there is no special interpretation of characters, so all codes 0 to 255
may be sent without any change.

The ARM processor requires BASICtools to know whether the user ARMbasic code is running. So now
when a program starts a SOH (001) character is sent and when the program finishes an EOT (004) character
is sent. User code should avoid using these character codes if BASICtools is being used for communication
with the module or board.

 Dec Hex Meaning Dec Hex Meaning

 000 000 NUL (Null char.)
 001 001 SOH (Start of Header)
 002 002 STX (Start of Text)
 003 003 ETX (End of Text)
 004 004 EOT (End of Transmission)
 005 005 ENQ (Enquiry)
 006 006 ACK (Acknowledgment)
 007 007 BEL (Bell)
 008 008 BS (Backspace)
 009 009 HT (Horizontal Tab)
 010 00A LF (Line Feed)
 011 00B VT (Vertical Tab)
 012 00C FF (Form Feed)
 013 00D CR (Carriage Return)
 014 00E SO (Shift Out)
 015 00F SI (Shift In)
 016 010 DLE (Data Link Escape)
 017 011 DC1 (XON)
 018 012 DC2 (Device Control 2)
 019 013 DC3 (XOFF)
 020 014 DC4 (Device Control 4)
 021 015 NAK (Negative Ack)
 022 016 SYN (Synchronous Idle)
 023 017 ETB (End of Trans. Block)
 024 018 CAN (Cancel)
 025 019 EM (End of Medium)
 026 01A SUB (Substitute)
 027 01B ESC (Escape)
 028 01C FS (File Separator)
 029 01D GS (Group Separator)
 030 01E RS (Request to Send)
 031 01F US (Unit Separator)
 032 020 SP (Space)
 033 021 ! (exclamation mark)
 034 022 " (double quote)
 035 023 # (number sign)
 036 024 $ (dollar sign)

 064 040 @ (AT symbol)
 065 041 A
 066 042 B
 067 043 C
 068 044 D
 069 045 E
 070 046 F
 071 047 G
 072 048 H
 073 049 I
 074 04A J
 075 04B K
 076 04C L
 077 04D M
 078 04E N
 079 04F O
 080 050 P
 081 051 Q
 082 052 R
 083 053 S
 084 054 T
 085 055 U
 086 056 V
 087 057 W
 088 058 X
 089 059 Y
 090 05A Z
 091 05B [(left bracket)
 092 05C \ (back slash)
 093 05D] (rightbracket)
 094 05E ^ (caret)
 095 05F _ (underscore)
 096 060 `
 097 061 a
 098 062 b
 099 063 c
 100 064 d

Page 526

 037 025 % (percent)
 038 026 & (ampersand)
 039 027 ' (single quote)
 040 028 ((left parenthesis)
 041 029) (right parenthesis)
 042 02A * (asterisk)
 043 02B + (plus)
 044 02C , (comma)
 045 02D - (minus or dash)
 046 02E . (dot)
 047 02F / (forward slash)
 048 030 0
 049 031 1
 050 032 2
 051 033 3
 052 034 4
 053 035 5
 054 036 6
 055 037 7
 056 038 8
 057 039 9
 058 03A : (colon)
 059 03B ; (semi-colon)
 060 03C < (less than)
 061 03D = (equal sign)
 062 03E > (greater than)
 063 03F ? (question mark)

 101 065 e
 102 066 f
 103 067 g
 104 068 h
 105 069 i
 106 06A j
 107 06B k
 108 06C l
 109 06D m
 110 06E n
 111 06F o
 112 070 p
 113 071 q
 114 072 r
 115 073 s
 116 074 t
 117 075 u
 118 076 v
 119 077 w
 120 078 x
 121 079 y
 122 07A z
 123 07B { (left brace)
 124 07C | (vertical bar)
 125 07D } (right brace)
 126 07E ~ (tilde)
 127 07F DEL (delete)

Page 527

Bitwise Operators

Y = A AND B

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Y= A OR B

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

Y = A XOR B

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

Y = NOT A

A Y
0 1
1 0

Page 528

Operator Precedence

Description

 When several operations occur in a single expression, each operation is evaluated and resolved in a
predetermined order. This called the order of operation or operator precedence. There are three main
categories of operators; arithmetic, comparison, and logical. If an expression contains operators from
more than one category, arithmetic operators are evaluated first, comparison operators next, and finally
logical operators are evaluated last. If operators have equal precedence, they then are evaluated in the
order in which they appear in the expression from left to right. Comparison operators all have equal
precedence.

 The following table gives the operator precedence for each operator in each category. Operators lower
on the list have a lower operator precedence. Operators on the right have lower precedence than ALL
operators in the column to the left. Arithmetic operators are evaluated before comparison operations, and
logical operators are last.

 Parentheses can be used to override operator precedence. Operations within parentheses are
performed before other operation. However, within the parentheses operator precedence is used.

Arithmetic Comparison Bitwise/Logical
- (Negation) = <> < > <= >= AND
*, / (Multiplication and division) OR XOR
MOD (Modulus Operator) NOT
+, - (Addition and subtraction)
<<, >> (Shift Bit Left and Shift Bit Right)

See also

 Operator List

Page 529

Variable Types

NAME BITS FORMAT MIN VAL MAX VAL
INTEGER 32 signed integer -2147483648 +2147483647
SINGLE 32 signed float -1.0000E+38 +1.0000E+38
ARRAY fixed length signed integer -2147483648 +2147483647

SINGLE ARRAY fixed length signed float -1.0000E+38 +1.0000E+38

STRING variable/max
length 256 bytes

zero terminated 0 +255

BYTE used as byte array
no max length

 0 +255

Page 530

Support

Support
 How to contact the developers
 How to report a bug
 Contributors
 Notices

Page 531

https://www.coridium.us/coridium/shop/boards/bd05-stamp

Trouble Shooting
Before you start make sure you have the latest version of the tools.

The latest tools are always available at the support page on the Coridium Website-

Check your cables, check the LED

See Connect USB All Coridium boards have an Green LED that is driven when power is applied. If that
LED is not on, check you connection, or using the Schematics trace the power connections.

Determining which COM port should be used

The tools will query the Window registry and will list the available COM ports. If you are using a Coridium
USB dongle, a Coridium card with built in USB connection, a SparkFun USB dongle or a FTDI USB cable;
then those COM ports will be listed in capital letters. Those in lower case are NOT using a Coridium dongle
or built in USB port, do not select those. If you are using some other serial connection, refer to the section
on ISP checks .

Page 532

http://www.coridiumcorp.com/Support.php

In the example above, COM9 is a Coridium board, com1 and com2 are serial ports built into the PC.

You can also identify an FTDI port using the Device Manager.

Open the Control Panel>System>Device Manager

Page 533

USB(COMx not appearing)

 If the USB Serial Port does not appear, check the connection and if its still not there install the driver.

Open the /Program Files(x86)/Coridium/Windows Drivers folder. Run the .exe file in that folder. This will
install the FTDI driver. The FTDI FT232RL is the USB device we use on the Coridium USB dongle.

We use the FTDI VCP driver, more information on its installation can be found at their website .

Offline indicator

 This will be shown if the port you were using last time the program was run is no longer available. You
must reselect a Port using the Option Menu to reestablish communication with the ARM. Make sure any
other copies of MakeItC or BASICtools are closed, as you can not open a port simultaneously with more than
one program.

Page 534

http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Support/Documents/AppNotes/AN_119_FTDI_Drivers_Installation_Guide_for_Windows7.pdf

Reset ARM shows no message

If your BASIC program does not appear to start up, hit the STOP button. This will stop any known existing
program, even those that alter the UART baudrates. If your program sends a large amount of data to the
UART, it may take a while for the STOP to respond. You may need to close BASICtools and re-open them.
When BASICtools starts up it halts any existing user program. At that point you can load a new program --
something short like PRINT 1234 ' will erase a run away program.

After STOP or restarting BASICtools you should get a welcome message.

Check Baud Rate

Or you might not have the correct baud rate selected. Make sure it is set to 19200 or 115200 baud. Baud
settings in the Device Manager do NOT affect the MakeItc or BASICtools. Firmware versions after 8.34 use
115.2 Kb, this includes Teensy, mBed and many boards we built after 2014.

Page 535

Check ARM connection

TclTerm has some tools to verify a connection to the ARM chip.

The connection test will use the Coridium USB dongle or built in USB connection to place the ARM into ISP
mode (holds P0.14, P2.10 or P0.1 low during RESET, depending on the part -- details in the corresponding
NXP User manual). Then a ? will be sent followed by "Synchronized". If an appropriate answer is received a
command to ID the part will be sent and that will be reported --

Page 536

Or if no part is found

If no part is found go back check the connection, power connections, or which port has been selected.

If your USB/serial connection is something homebrew, and if you followed the Coridium reference
schematics, you can use the test menu under options to wiggle the required RESET, BOOT and RXD pins to
verify they are connected to the CPU.

Page 537

How to contact the developers

You should contact the ARMbasic developers through Coridium Corp.

 www.coridiumcorp.com

Tech Support monitors the following groups.

 groups.yahoo.com/group/ARMexpress
 groups.yahoo.com/group/gnuarm

Coridium has done custom ports of ARMbasic to other platforms.

 techsupport@coridiumcorp.com

See also

 Reporting a bug

Page 538

http://www.coridiumcorp.com
http://tech.groups.yahoo.com/group/ARMexpress/
http://sourceforge.net/forum/?group_id=122342
mailto:techsupport@coridiumcorp.com

How to report a bug

 Before reporting a bug, try to make sure it's a bug in ARMbasic and not a bug in your own code. Try to
write a small test that reproduces the problem you are encountering. Read any relevant documentation. If you
show people that you have tried to solve your own problem, rather than immediately running for help, you will
be more likely to find people willing to help you.

 Be as specific as you can - "The HWOWM library function fails when it is called with a value of 1234" is
much better than "It crashes".

Also describe your setup, which board, which PC OS and other configuration details.

 The first place to go in the case you believe you've encountered a bug is
groups.yahoo.com/group/ARMexpress

 If you have isolated a compiler bug completely, and you have steps to reproduce it and a small piece of
sample code, you can also file a bug report with tech support at support @coridiumcorp.com.

 DO NOT file general "it doesn't work!" bug reports in the groups.yahoo.com/group/ARMexpress system.
Only isolated, reproducible bugs should be posted there.

Page 539

http://www.yahoo-groups.ARMexpress.com
http://sourceforge.net/tracker/?group_id=122342&atid=693196
http://www.yahoo-groups.ARMexpress.com

Updating ARMbasic Firmware

The ARMbasic compiler can be freely downloaded. There is no

charge to run BASIC or C on Coridium Products.

We do offer for sale a BASIC firmware that can be installed on OTHER vendors hardware. There is a demo
version that allows you to try it before you buy it. That demo version limits the code and data space.

This utility is protected. You will need to obtain this program from Coridium which is part of the order
process. For now this will be emailed to you manually from Coridium, until this process is fully automated

Upgrading Firmware on Coridium boards
 Install Software

Installing Firmware on other vendors boards
 Install Software
 Install Demo Firmware
 Installing purchased full feature Firmware

Page 540

http://www.coridiumcorp.com

Step 1: Install Software
The ARMbasic compiler runs on the PC, in combination with a BASIC support library that is installed on the
ARM. This support library (firmware) will be updated from time to time to support new features. To upgrade
that firmware you will need to purchase the upgrade.

Purchase at Coridium Web store

This installer is meant for Windows either NT, XP or XPx64, Vista and Win 7 (both 32 and 64 bits).

The software is downloaded from the web, and run as an installer SETUP program.

 Click Next to get started.

 Accept the defaults and Install. You may chose a different target directory.

Page 541

http://www.coridiumcorp.com/catalog/product_info.php?products_id=69

 The installation will now run, and when it finishes hit Close .

 And its as easy as that.

On to Step 2

Page 542

Step 2: Writing the Firmware.
The software installed in the previous step would either be FirmUp for firmware upgrades.

To run FirmUp you must have network access, as information is downloaded from the Coridium website.

Step 2: Establish communication
 Before you can run FirmUp you must be able to communicate with the board that contains the NXP
LPCxxxx ARM, and then load ARMbasic firmware onto that board. These 2 steps are accomplished with the
FirmUp program. The installation of Step 1 has installed a Start Menu shortcut.

 FirmUp allows you to choose the serial port on the PC from a list of known ports. Ports in that list that are
capitalized were determined to be using FTDI USB serial devices. You must also set the control type, which
for most will be Normal mode. Legacy mode is for those users who have inverted the control signals, for
instance to run Hyperterm or Linux, details here . For wireless boards, Manual mode should be chosen.

Page 543

 So select your comport and choose the control method. To test that push the soft button TEST on the
FirmUp program. It will prompt you for any action required (like pushing buttons on the target board), and
then test the communication with the PC.

If this does not pass, then you cannot go on to the next step.

Page 544

Step 3: Install Firmware on ARM
 This part of the install needs to be run once to place a base set of libraries on the ARM processor. This
firmware includes the initialization code, communication routines, and a set of subroutines called from the
user ARMbasic program.

Once the TEST above passes and the device type has been selected, the TEST button will change to
UPDATE. Select this button ONCE. You should see a dialog similar to the one below.

Firmware has been successfully loaded, you can open a terminal window here to verify that.

Page 545

Page 546

Contributors

The ARMbasic compiler itself is property of the Coridium Corp. and all rights are reserved.

Mike and Bruce began this project in 2003. The original target was a Cygnal 8051 using the Keil Compiler.
As part of the development, the BASIC was compiled on a PC in both Visual C and GCC. This allowed
quicker development of the language parser. Then a need arose for a hardware debugger on an ARM based
cell phone that used the CodeWarrior compiler. To check out hardware such as new displays and camera
subsystems a new approach was required. At the time it took 3-5 hours to make a change in the main
software on the platform. The BASIC made it possible to verify interfaces in minutes. Then Zilog introduced
the websurfer and the BASIC was ported to that platform with a web interface replacing the serial port. Later
it moved to the Rabbit 3100 modules and was productized on the 3710. This product is the BASIC-8. For
performance the interpreter was replaced with code compiler that performed a two pass compile-link step.
The speed of code increased by at least an order of magnitude. Now Coridium has moved this compiler back
to the ARM using GCC. This time it includes a single pass BASIC compiler that incrementally builds
programs in Flash. Code tables are maintained even after the program is "run" which allows the user the look
and feel of an interpreter. Its easy to check the value of variables when the program has stopped, or to even
change them. Also during this time the BASIC-8 product's web interface was translated to Japanese and is
available as the NAPI-BASIC server.

As you can see the compiler has been around the block, and now the world too. Its quite portable as having
lived on 6 different C-platforms. As it has been used extensively, its also quite stable. Coridium will continue
to add features as needed and offer customizations for OEM customers.

A number of utilities have been used to produce the ARMexpress system.

Freewrap is used to generate BASICtools from a Tcl/Tk script.

The MinGW cpp is used for pre-processing the BASIC.

The Tcl'ers Wiki Oscilloscope was the source for the basis of the LogicScope code.

ARMbasic was compiled with Winarm GCC.

The ARMbasic documentation has been based on the documents of the GPL WikiPedia and FreeBASIC
project. This document is also covered under the GFDL license.

Page 547

Notices

 NO WARRANTY

 1. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. CORIDIUM PROVIDES THE PROGRAM "AS IS" WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 2. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL CORIDIUM BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO

USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE

OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR

OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The ARMbasic© compiler is distributed as part of hardware sold by Coridium Corp. such as the BASICchip.
All rights to the compiler are reserved under copyright to Coridium Corp. It may not be copied or reverse
engineered..

 Windows® is a registered trademark of Microsoft Corporation.
 VisualBASIC® is a registered trademark of Microsoft Corporation.
 BASIC Stamp® is a registered trademark of Parallax, Inc.
 PBASIC™ is a trademark of Parallax, Inc.
 I2C® is a registered trademark of Philips Corporation.
 1-Wire® is a registered trademark of Maxim/Dallas Semiconductor.
 SPI™ is a trademark of Motorola

 This documentation is released under the GFDL license.

Page 548

Obsolete

Obsolete

These functions have been superceeded by more modern implementations.

 Obsolete PBASIC functions
 DATA, READ and RESTORE replaced by CONST
 ON replaced by interrupts
 RXD0, TXD0 replaced by Serial Array

Page 549

https://www.coridium.us/coridium/shop/boards/bd05-stamp

PBASIC type functions -- OBSOLETE, included for reference

Library

#include <PULSE.bas> ' PBASIC library, these routines were written for ARMexpress, and included
for general reference

C

 COUNT

P

 PULSIN

 PULSOUT

 PWM

R

 RCTIME

Interface

' duration in microseconds
' timeperiod in milliseconds
' duty 0-255

FUNCTION COUNT (pin, timeperiod)
FUNCTION PULSIN (pin, level)
SUB PULSOUT (pin, duration)
SUB PWM (pin, duty, timeperiod)
FUNCTION RCTIME (pin, state)

Description

COUNT the number of pulses low-high-low or high-low-high on pin over a timeperiod of milliseconds, returning
the FUNCTION value.

PULSIN measures an input pulse on pin at level, returning the value in microseconds. The IO direction of pin
will be set to input. If pin is already at level when PULSIN is called it will wait to a transition to the opposite
level. PULSIN will wait 1 second for pin to go to level. The minimum pulse that can be measured is 1
microseconds. If pin does not go to level or remains at level longer than 1 second 0 is returned..

PULSOUT will generate an output pulse on pin for duration microseconds. The IO direction of pin will be set
to output. The level of the output will be switched, driven for duration microseconds, then switched back to its
initial level. The minimum pulse period is 1 microseconds.

PWM will generate a pulse corresponding to an analog signal on pin for timeperiod in milliseconds with a duty
cycle of 0 to 255. A duty cycle of 255 corresponds to an output value of 100%. The IO direction of the pin will
be set to output, the PWM pulse train is output, and then the pin is set to tri-state (input). If the pin is
connected to an RC filter, then the voltage will stay on the capacitor for a period of time determined by the
load.

RCTIME will measure the time which pin remains at level, returning the value in microseconds(us). The
minimum time measured is 1 microseconds. If pin is not at level when RCTIME is called -1 is returned. If pin
remains at level longer than 1 second 0 is returned.

Page 550

COUNT -- Obsolete PBASIC routine

Syntax

#include <PULSE.bas> ' PBASIC library, these routines were written for ARMexpress, and included for
general reference

FUNCTION COUNT (pin, milliseconds)

Description

Count the number of pulses low-high-low or high-low-high on pin over a duration of milliseconds, returning
the value to variable.

Example

#include <PULSE.bas>
'Report the number of transition cycles on pin 7 during a 10 second interval

ct = COUNT (7, 10000)
PRINT "Pin 7 transitioned "; ct; " times"

Pin 7 transitioned 3 times

Differences from other BASICs

 no equivalent in Visual BASIC
 different syntax from PBASIC, and times in milliseconds rather than "ticks"

See also

 RCTIME
 Hardware Pulse Routines

Page 551

PULSIN -- Obsolete PBASIC routine

Syntax

 ' PBASIC library, these routines were written for ARMexpress, and included for general reference

#include <PULSE.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION PULSIN (pin, level)

Description

Measure an input pulse on pin at level, returning the value to variable.

The IO direction of pin will be set to input.

If pin is already at level when the function is called it will wait to a transition to the opposite level.

The function will wait 1 second for pin to go to level. The length of time is measured in microseconds(us).
The minimum pulse that can be measured is 1 microseconds. If pin does not go to level or remains at
level longer than 1 second variable is set to 0.

Example

#include <PULSE.bas>

'Wait for pin 7 to go high then low.
'Print the number of microseconds pin 7 was high.

tim = PULSIN (7, 1)
PRINT "Pin 7 pulse high for "; tim; " us"

Differences from other BASICs

 no equivalent in Visual BASIC
 Times are measured in microseconds rather than CPU dependent ticks in PBASIC

See also

 RCTIME
 COUNT
 Hardware Pulse Routines

Page 552

PULSOUT -- Obsolete PBASIC routine

Syntax

 ' PBASIC library, these routines were written for ARMexpress, and included for general reference

#include <PULSE.bas> ' source in /Program Files/Coridium/BASIClib

SUB PULSOUT (pin, microseconds)

Description

Generate an output pulse on pin for microseconds.

The IO direction of pin will be set to output. The level of the output will be switched, driven for
microseconds, then switched back to its initial level. The minimum pulse period is 1 microseconds.

Example

#include <PULSE.bas>

' Generate a 1 second high pulse on pin 4.
IO(4)=0
PULSOUT (4, 1000000)

Differences from other BASICs

 no equivalent in Visual BASIC
 measures time in microseconds rather than CPU dependent ticks in PBASIC

See also

 PULSIN
 Hardware Pulse Routines

Page 553

PWM -- Obsolete PBASIC routine

Syntax

 ' PBASIC library, these routines were written for ARMexpress, and included for general reference

#include <PULSE.bas> ' source in /Program Files/Coridium/BASIClib

SUB PWM (pin, duty, milliseconds)

Description

Generate an analog signal on pin for milliseconds with a duty cycle of 0 to 255.
A duty cycle of 255 corresponds to an output value of 100%.

The IO direction of the pin will be set to output, the PWM pulse train is output, and then the pin is set to
tri-state (input). If the pin is connected to an RC filter, then the voltage will stay on the capacitor for a
period of time determined by the load.

Example

#include <PULSE.bas>

 ' Generate a 1.65 volt (half of 3.3V) on pin 4 for 6 seconds.

PWM (4, 127, 6000)

Differences from other BASICs

 no equivalent in Visual BASIC
 duration in PBASIC is CPU dependent and measured in ticks

See also

 HWPWM
 PULSOUT
 Hardware Pulse Routines

Page 554

RCTIME -- Obsolete PBASIC routine

Syntax

 ' PBASIC library, these routines were written for ARMexpress, and included for general reference

#include <PULSE.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION RCTIME (pin, level)

Description

Measure the time which pin remains at level, returning the value to variable.
The length of time is measured in microseconds(us). The minimum time measured is 1 microseconds.
If pin is not at level when the function is called variable is set to 1.
If pin remains at level longer than 1 second variable is set to 0.

Example

#include <PULSE.bas>

DIR(7)=0

'... some external device has set input pin 7 to low or 0 volts

tim = RCTIME (7, 0)
PRINT "Pin 7 low for "; tim; " us"

'... function waits for input pin 7 to go to high state

Pin 7 low for 50 us

Differences from other BASICs

 no equivalent in Visual BASIC
 results in microseconds rather than CPU dependent ticks in PBASIC

See also

 PULSIN
 Hardware Pulse Routines

Page 555

REV (moved to library)

Syntax

#include <PBASIC.bas>

FUNCTION REV (value, number of bits)

Description

Function returning a reversed (mirrored) copy of a specified number of bits of a value, starting with the
rightmost bit (LSB).

For instance, 0xFEED REV 4 would return 0xB, a mirror image of the last four bits of the value.(The
binary representation of 0xD being 1101 and 0xB 1011)

Differences from PBASIC

 no equivalent in Visual BASIC
 same as PBASIC

See also

 AND
 XOR
 NOT

Page 556

DATA (obsolete)

replaced by CONST array

See CONST array

Page 557

ON (only on ARM7 parts with integer BASIC firmware)

ON is NOT used with BASICchip, PROstart, PROplus and SuperPRO see INTERRUPT SUB

ON is no longer supported on the Floating point versions of firmware, Use the INTERRUPT SUB or
revert to the integer version of firmware can be found in the Coridium Forum.

Syntax

ON TIMER msec label

 or

ON EINT0|EINT1|EINT2 RISE|FALL|HIGH|LOW label

Description

These statements will initialize interrupt service routines so that when the interrupt occurs the code at
label will be executed. Label must have been pre-defined and can either be a SUB (without parameters)
or code beginning with a label: and ending in a RETURN. The interrupt response time is approximately 3
usec. Other interrupts may make this time longer.

TIMER interrupts will occur every msec milliseconds. msec may be a variable or constant, expressions
are not allowed. The value for msec must be greater than 1. If TIMER interrupts are used, then only 4
hardware PWM channels are available.

EINT0 and EINT2 are 2 pins that will interrupt when the defined event occurs. RISE and FALL are the
preferred method and will generate interrupts on rising or falling edges on those 2 pins. HIGH and LOW
are supported, but if the pin remains in that state interrupts will be continuously generated.

EINT1 is connected to the RTS line of the PC, and is normally high, so it can be used by a program on
the PC to interrupt the ARMmite, rather than having to reset the board. EINT1 is also available on the
ARMexpress modules (pin 21), and should also be kept normally high if used.

Each time the ON statement is executed the interrupt will be initialized, so it is possible to change
routines within the program. Multiple interrupts can be used, but they are serviced in the order received,
and each interrupt service routine will complete before the next one is handled (interrupts that occur while
one is being serviced will be handled after the current interrupt is processed).

Interrupt routines should normally be short and simple. The state of the other user BASIC code will be
restored after the interrupt, with the exception of string functions, which should NOT be done inside an
interrupt. PRINT statements use strings, so other than a temporary debug to see if the interrupt occurs,
they should not be inside an interrupt routine.

To disable the interrupt use the following #define

#define VICIntEnClear *&HFFFFF014

#define TIMERoff VICIntEnClear = &H20
#define EINT0off VICIntEnClear = &H4000
#define EINT1off VICIntEnClear = &H8000
#define EINT2off VICIntEnClear = &H10000

ON added in version 7.09

The LPC2106 based ARMexpress supports ONLY ON LOW, due to hardware limitations.

ON is a statement that is executed, so if multiple ON statements are in a program the last statement
executed will be active command.

Page 558

http://www.coridiumcorp.com/forum/viewtopic.php?f=10&t=710&p=2300#p2300

Cortex M3 and M0 do not support ON, but use INTERRUPT SUB

Example

IO15up = 0 ' serves to declare IO15up

 '...
SUB IO15count
 IO15up = IO15up + 1
ENDSUB

 '...
main:

ON EINT2 RISE IO15count

IO15up = 0
while 1
 if IO15up <> lastIO15count then
 print IO15up
 lastIO15count = IO15up
 endif

 '...

loop

every20msec:
 checkIO0 = checkIO0 + (IO(0) and 1)
 IO0samples = IO0samples +1
RETURN

 '...
main:

ON TIMER 20 every20msec

 '...

PRINT "Percentage of time IO0 is HIGH =", 100*checkIO0 / IO0samples

 '...

Differences from other BASICs

 no equivalent in VB
 no equivalent in PBASIC

See also

 GOTO
 RETURN

Page 559

READ (obsolete)
replaced by CONST Array

See CONST array

Page 560

RESTORE (obsolete)

replaced by CONST Array

See CONST array

Page 561

RXD0, TXD0 BAUD0, RXD1, TXD1, BAUD1 (obsolete)

replaced by RXD(channel) TXD(channel) BAUD(channel)

Earlier hardware versions had only 1 or 2 UARTs. Now there can be up to 8 in some parts, so these
dedicated routines were replaced by RXD(channel) , TXD(channel) and BAUD(channel)

If you need to support earlier code use the pre-processor --

#define RXD0 RXD(0)
#define TXD0 TXD(0)
#define BAUD0 BAUD(0)

#define RXD1 RXD(1)
#define TXD1 TXD(1)
#define BAUD1 BAUD(1)

Page 562

Logic Scope -- no longer supported

Logic Scope
 Timed Samples
 User Defined Sampling
 Stand Alone Analyzer

Page 563

http://www.coridiumcorp.com

Timed sampling with Logic Scope
Timing setup

 The ARM can sample the up to 32 data lines at 1 MHz rates in BASIC. The software library
LogicScope.bas is used to coordinate this sampling. Other sample rates that are multiples of 40 uSec are
also supported.

 While sampling data the CPU is consumed gathering the 400 samples and then sending them to the PC,
at which point processing of the user program can continue.

Example

Example

#include <LogicScope.bas> ' call in support for LogicScope functions
#include <HWPWM.bas>
 '...

' user code to generate the stimulus -- the ScopeDemo engages the HWPWM

HWPWM (1,200,10)
HWPWM (2,200,20)
HWPWM (3,200,40)
HWPWM (4,200,80)
HWPWM (5,200,16)
HWPWM (6,200,32)
HWPWM (7,200,40)
HWPWM (8,200,45)

 ...

while 1
 call doLogicScope (50,0,0) ' 50 uSec, and trigger on any state (mask =0, trigger =0)
 stop ' stop needed only to handshake with the PC for continuous tracing
loop

keyw ords: Logic Scope

Page 564

User sampling with Logic Scope
Random sampling setup

 LogicScope is setup to display 400 samples of 16 IO lines. The user can generate these samples by
sprinkling the sample call into their program.

 The sample data call is completed in less than 3 uSec, except on the 400th sample where the data is sent
to the PC. If you don't have 400 samples, but want to see the data in the sample buffer call the
FlushScopeSamples routine.

Example

Example

#include <LogicScope.bas> ' call in support for LogicScope functions

#define DoSample CALL doScopeSample ' use this version to watch code
'#define DoSample ' use this version to remove LogficScope watch

'...

CALL setupLogicScope ' initialize the sampling routine

'...

' user code for a custom serial interface

for i=0 to 8
 x = (x << 1) or (IN(3) and 1)
 DoSample
next i

 '...

CALL FlushScopeSamples ' view any data in the buffer

keyw ords: Logic Scope

Page 565

Stand Alone Logic Scope

 The ARMmite is a flexible solution to capture the logic state of your project. The ability to program the
control of sampling in BASIC can be a powerful tool. Using a second ARMmite means that the timing of your
code will not be affected when using LogicScope.

Board under test setup

 ..

Analyzer board setup

 ..

Page 566

ARMmite sampling data from ARMexpress/ ARMexpress LITE evaluation board

keyw ords: Logic Scope

Page 567

Index

A

 ABS

 AD

 ADDRESSOF

 AND

 ARM hardware access

 ARMweb Ethernet Services

 Arrays

 ASCII table

 AS

 __ASM__

 __ASM32__

B

 BAUD

 BYREF

 BYTEBUS -- obsolete

 BYVAL

 BYTE

C

 CALL

 callback

 CASE

 CHR

 CLEAR

 Compound Operators

 CONST

 Constants

 COUNT

D

 DATA -- obsolete

 Data Abort

 Data Types

 DAY

 DEBUGIN

 Debug operations

 DIM

 DIR

 DO...LOOP

 DOWNTO

 DXF files

E

 ELSE

 ELSEIF

 END

 ENDFUNCTION

 ENDIF

 ENDSELECT

 ENDSUB

 Error Reporting

 EXIT

F

 FAQs

 Firmware Version 7

 FOR..NEXT

 FREAD

Page 568

 CPU details

F

 FUNCTION

G

 Getting Started

 GOSUB

 GOTO

H

 Hardware Access

 HEX

 HIGH

 HOUR

 HWPWM

 Hyperbolic Functions

 Hyperterm

I

 I2CIN

 I2COUT

 IF...THEN

 IN

 INPUT

 Installation

 INTEGER

 Interfacing with TTL

 INTERRUPT

 Inverse Trig Functions

 IO

L

 LEFT

 Legacy Serial Programs

 LEN

 LIST

 LOOP

 LOW

M

 MAIL

 MAIN

 Matlab

 Mechanical Drawings

 MIDSTR

 MINUTE

 Memory Map

 MOD

 MONTH

 Multi-Core Debug

N

 NaN

 NEXT

 NOT

O

 ON

 Operator List

 Operator Precedence

 OR

 OUT

 OUTPUT

Page 569

 OWIN

 OWOUT

P

 PARAMARRAY

 PEEK and POKE

 Pin diagram -- ARMmite

 Pin diagram -- ARMweb

 Pin diagram -- BASICchip

 Pin diagram -- PROplus

 Pin diagram -- SuperPRO

 Pointers

 Power

 Power Functions

 Power On behavior

 Prefetch Abort

 Pre-Processor

 PRINT

 PRINTF

 PULSIN

 PULSOUT

 PWM

 P0 P1 P2 P3 P4

Q

 QuickSort

R

 Random Numbers

S

 Schematics

 SECOND

 SELECT CASE

 SERIN

 SEROUT

 SHIFTIN

 SHIFTOUT

 SINGLE

 SLEEP

 Spec Sheets -- CPU

 SPIBI

 SPIIN

 SPIOUT

 SPRINTF

 STEP

 STOP

 STR

 STRCHR

 STRCOMP

 STRING

 Strings

 STRSTR

 SUB

Page 570

 RCTIME

 RD_BYTE

 RD_HALF

 READ -- obsolete

 Register Access

 RESTORE -- obsolete

 RETURN

 REV -- library call now

 RIGHT

 RND -- library call now

 RS232 Connections

 RUN

 Run Away Programs

 RXD

T

 ternary operator

 THEN

 Time Functions

 TIMER

 Timing

 TO

 TOLOWER

 TOUPPER

 Trig functions

 Trouble Shooting

 TTL interface

 TXD

V

 VAL

 Variables

W

 WAIT

 WAITMICRO

 WEEKDAY

 WHILE

 WRITE

 WR_BYTE

 WR_HALF

X

 XOR

Y

Page 571

 TXFREE

U

 UDPIN

 UDPOUT

 unreachable

 UNTIL

 USB Connections

 YEAR

Misc.

 &H $ constants

Page 572

	Table of Contents
	Getting Started
	ARM Stamp LPC11U37
	Install Software
	Connect USB
	Writing your first program
	Programming the IO
	More complex programs
	BASICtools Features

	SuperPRO and Arduino variants
	Install Software
	Connect USB to PRO family
	Writing your first program
	Programming the IO
	More complex programs
	BASICtools Features

	Web enabled products
	Install Software
	Connect Ethernet
	USB connection for BASICtools
	Writing a simple Program via the web
	Writing a program with BASICtools
	Programming the IO
	ARMweb C support

	Getting started with MBED
	Install Software
	Connect USB to MBED
	Writing your first program
	Programming the IO

	Getting started with Teensy
	Install Software
	Connect USB to Teensy
	Writing your first program
	Programming the IO

	The Compiler
	About
	Main Features
	Requirements
	Installing
	Running
	ARMbasic and other BASICs
	Differences from PBASIC
	PreProcessor
	Frequently Asked Questions
	Revision History
	Notices

	The Language
	Alphabetical KEYWORDs
	PreProcessor
	#define
	#else
	#ifdef
	#if
	#include
	#undef
	#warning

	Simple Statements
	Assignment
	CALL
	Comments
	END
	EXIT
	GOSUB
	GOTO
	DEBUGIN
	PRINT
	RETURN

	Compound Statements
	DO...LOOP
	FOR...NEXT
	DOWNTO
	STEP
	TO

	IF...THEN
	SELECT CASE
	TO

	WHILE...LOOP

	Other Statements
	__ASM__
	CONST
	DIM
	label:
	MAIN
	__MAP__
	ON
	STOP

	Debugging
	@ (dump memory)
	! (set memory)
	CLEAR
	DEBUGIN
	LIST
	RUN
	STOP
	Aborts

	Functions
	BYREF
	BYVAL
	PARAMARRAY
	FUNCTION
	SUB
	ENDFUNCTION
	ENDSUB

	Operators List
	& (String concatenation)
	* (Multiplication)
	+ (Addition)
	+ (String concatenation)
	- (Negation)
	- (Subtraction)
	> (Greater than)
	/ (Division)
	< (Less than)
	<= (Less than or equal)
	<> (Inequality)
	= (Equality)
	>= (Greater than or equal)
	AND (Conjunction)
	NOT (Bit-wise complement)
	OR (Disjunction: Inclusive Or)
	<< (Shift-left)
	>> (Shift-right)
	XOR (Exclusive Or)

	Compound Operators
	Operator Precedence
	Ternary Operation
	Type Conversion
	AddressOf operation
	Data Types
	Constants
	Variables
	Arrays
	Strings
	ARM Hardware Access
	Converting Data Types
	Expression Evaluation
	CHR
	HEX
	SINGLE<->INTEGER
	STR
	VAL

	Additional Reserved Words
	Obsolete Words

	Runtime Library
	Byte and HalfWord ops
	RD_BYTE
	RD_HALF
	WR_BYTE
	WR_HALF

	Mathematical Functions
	ABS
	MOD

	File Operations
	FILEOPEN
	FILEREADDIR
	FILEREADBYTE
	FILEWRITEBYTE
	FILEEOF
	FILECLOSE

	Floating Point Functions
	Trig functions
	Inverse Trig functions
	Hyperbolic functions
	Power functions
	Misc functions
	Random Numbers

	String Functions
	String Comparisons
	CHR
	HEX
	INSTR
	LCASE
	LEFT
	LEN
	MID
	MIDSTR
	PRINTF
	RIGHT
	Single byte access
	SPRINTF
	STR
	STRCHR
	STRCOMP
	STRSTR
	TOLOWER
	TOUPPER
	UCASE
	VAL

	* pointers
	QUICKSORT

	Hardware Library
	Date and Time Functions
	DAY
	HOUR
	IDLE
	MINUTE
	MONTH
	SECOND
	TIMER
	WAIT
	WAITMICRO
	WEEKDAY
	YEAR

	Flash Access
	FREAD
	Memory Map
	WRITE

	Function List
	HWPWM
	I2C
	I2CIN
	I2COUT

	OneWire
	OWIN
	OWOUT

	Serial - BitBanged
	bbBAUD
	bbRXD
	SERIN
	SEROUT
	bbTXD

	Serial - UART Hardware
	BAUD(x)
	RXD(x)
	TXD(x)
	TXFREE(x)

	SHIFTIN, SHIFTOUT
	SHIFTIN
	SHIFTOUT

	SPI
	SPIBI
	SPIIN
	SPIOUT

	Interrupts
	ADDRESSOF
	INTERRUPT
	INTERRUPT SUB
	SLEEP

	Pin Controls
	Overview
	Pin Mapping
	AD
	BYTEBUS -- ARMweb only
	DAC
	DIR
	HIGH
	IN
	INPUT
	IO
	LOW
	OUT
	OUTPUT
	Port P0..P4
	Register Port Access

	Hardware Info
	BASICchip Pin Diagram
	BASICchip SO-20 Pin Diagram
	CPU details
	DATA Logger Pin Diagrams
	LPC11U37 Details
	LPC4078 Details
	LPC54005 Details
	LPC54102 Details
	Memory Map
	Memory & Peripheral Use
	Multi Core debuging
	Power
	Power On Behavior
	PROstart Pin Diagrams
	RS232 or USB connection
	Schematics
	Serial Configuration
	SPI,Microwire
	SuperPRO/ PROplus Pin Diagrams
	Timing
	TTL and other interfacing
	USB use
	USB use with Linux, Hyperterm, TeraTerm
	USB use with MatLab
	Using the I2C Bus
	Legacy Products-- not for new designs
	ARMexpress LITE Pin Diagram
	ARMexpress Pin Diagram
	ARMmite Pin Diagrams
	ARMweb Pin Diagrams
	BASICboard Pin Diagram
	DINrail Pin Diagrams
	PRO Pin Diagrams
	Wireless ARMmite Pin Diagrams
	XB sensor Pin Diagrams

	Ethernet Services
	Getting started with Ethernet
	USB connection for BASICtools
	Connect Ethernet
	armweb.htm PAGE
	Controls Page
	CGI Services
	CGI example
	FTP Services
	HTTP Services
	Mail Services
	Web Services
	Web BASIC
	UDP Services
	ARMweb specific
	Power On Behavior
	Firmware Update

	Tables
	ASCII Character Codes
	Bitwise Operators
	Operator Precedence
	Variable Types

	Support
	Trouble Shooting
	How to contact the developers
	How to report a bug
	Upgrading Firmware
	Install Firm Up
	Writing Firmware

	Contributors
	Notices

	obsolete
	Obsolete PBASIC functions
	COUNT
	PULSIN
	PULSOUT
	PWM
	RCTIME
	REV

	DATA
	ON
	READ
	RESTORE
	RXD0...
	Logic Scope
	Timed Samples
	User Sampling
	StandAlone Scope

	Index

